基于丝瓜微结构的超轻仿生结构设计与热、力学分析
[Abstract]:In the face of complex and diverse engineering structures, engineering materials are required not only to have high strength and stiffness, but also to be lightweight and save materials. The structure of natural organisms is the result of natural selection and evolution of life for billions of years and has excellent mechanical properties. The design theory of bionic structural materials is to find out the fine structure of objects through the macroscopic and microscopic characteristics of graduate students. The main purpose of this paper is to study the bionic structure of luffa lucifera by analyzing the microstructural characteristics of natural loofah, and to design a new porous structure material similar to foam metal, and then to calibrate its mechanical and thermal conductivity. The main research contents include the following three parts: studies on the microstructures of loofah. The deep study on the structure of loofah is the basis of bionic structure design. Therefore, this paper firstly describes the macroscopic geometry of loofah, and points out that the main macroscopic morphology of loofah can be regarded as the foam structure with double holes. The inner layer and the outer layer are connected with each other by a stiffened plate 120 掳along the radial direction. Then the microstructure of luffa was observed by scanning electron microscope and laser cutting technique of Australian National University. Then the mechanical parameters (equivalent modulus of elasticity is about 8.79MPa) were measured by compression experiments. The analytical formulas of equivalent elastic modulus and density were given by means of curve fitting, based on the microstructural characteristics of loofah. The porosity of honeycomb hexagonal is simplified, and the new ultra-light bionic structure material is designed by using three-dimensional software Pro/E. The bionic structure was fabricated by using 3D printing technology using ABS-M30 as raw material, and its compression experiment was carried out. The equivalent modulus of elasticity was determined to be 166.9 ~ 180.59 MPa. Abaqus finite element software was used. The quasi-static compression and stability numerical simulation of bionic structure with ABS-M30 as material parameter was carried out by using sandwich structure with double layer splint. The equivalent elastic modulus is 133.21 MPA and the first order buckling critical load is 1064.8 N. In addition, the thermal conduction process of bionic structure is numerically simulated. Using pure aluminum as material parameter, the equivalent heat conduction coefficient is calculated to be 6.35W/ (m K).
【学位授予单位】:河南工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB12
【参考文献】
相关期刊论文 前10条
1 习常清;李志强;敬霖;王志华;赵隆茂;;开孔泡沫金属热传导性能的理论研究与数值模拟[J];稀有金属材料与工程;2014年03期
2 李小丽;马剑雄;李萍;陈琪;周伟民;;3D打印技术及应用趋势[J];自动化仪表;2014年01期
3 王忠宏;李扬帆;张曼茵;;中国3D打印产业的现状及发展思路[J];经济纵横;2013年01期
4 王雪莹;;3D打印技术与产业的发展及前景分析[J];中国高新技术企业;2012年26期
5 黎炎;李文嘉;王益奎;龙明华;;丝瓜络在医药、日用洗涤及保健品等方面的应用研究进展[J];广西农业科学;2010年01期
6 刘晓燕;郑春媛;黄彩凤;;多孔材料导热系数影响因素分析[J];低温建筑技术;2009年09期
7 张文毓;;新型仿生材料的研究进展[J];传感器世界;2009年06期
8 刘赵淼;高建成;;多孔泡沫金属抗侵彻能力研究[J];北京工业大学学报;2009年02期
9 邓朝晖;;建筑材料导热系数的影响因素及测定方法[J];工程质量;2008年07期
10 刘培生;;泡沫金属在双向承载条件下的力学性能[J];稀有金属材料与工程;2006年07期
相关博士学位论文 前2条
1 寇东鹏;细观结构对多孔金属材料力学性能的影响及多目标优化设计[D];中国科学技术大学;2008年
2 张俊彦;多孔材料的力学性能及破坏机理[D];湘潭大学;2003年
相关硕士学位论文 前10条
1 吴巧妹;丝瓜络纳米纤维素及其复合材料的制备与表征[D];福建农林大学;2014年
2 王军;空心微珠铝基复合泡沫材料压缩力学行为研究[D];哈尔滨工业大学;2013年
3 胡楠;改性丝瓜络纤维素对污染物的吸附性能研究[D];河南师范大学;2013年
4 徐天娇;六边形铝蜂窝力学行为的尺寸效应研究[D];太原理工大学;2013年
5 王艳丽;泡沫铝压缩性能的有限元模拟[D];太原科技大学;2010年
6 张戈;新型空间悬挑结构仿生(蜻蜓翅膀)设计研究[D];浙江大学;2007年
7 廖明顺;多孔材料力学性能数值模拟[D];昆明理工大学;2006年
8 金锋;轴压作用下矩形开孔圆柱壳的稳定性能研究[D];浙江大学;2005年
9 喻懋林;基于结构仿生理论的高比强度、比刚度结构设计研究[D];北京航空航天大学;2005年
10 赵明娟;泡沫金属结构性能关系模拟研究[D];昆明理工大学;2003年
,本文编号:2352988
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2352988.html