四边形网格质量优化的研究
[Abstract]:The quality of mesh has great influence on the accuracy and convergence of finite element and finite volume numerical simulation. Existing automatic quadrilateral mesh generation methods, such as quadrilateral tree method, forward propulsion method, paving method and so on, will inevitably produce poor quality elements, even illegal elements. The accuracy of numerical calculation is reduced, and even the analysis is stopped. In order to improve the accuracy of numerical simulation, it is necessary to optimize the finite element mesh to improve the mesh quality. In this paper, the quadrilateral mesh quality optimization method is studied from two aspects of node location optimization and grid topology optimization, and the corresponding mesh optimization program is developed, which is applied to the mesh generation of the actual two-dimensional flood analysis. On the premise of keeping the grid topology unchanged, the quality of the grid can be improved by moving the node position of the grid. Laplace smoothing algorithm is the most commonly used mesh quality optimization method. However, the Laplace smoothing algorithm can flip the cells and move the nodes out of the boundary during the processing of the concave area cells, which leads to the illegal of the units. Aiming at the problems of Laplace algorithm, this paper proposes a node location optimization method based on the steepest descent method. The objective function of mesh quality optimization is established. The node position is taken as the design variable, and the node position is optimized by optimizing the node position. Achieve the goal of improving grid quality. Compared with Laplace smoothing algorithm, the mesh quality of concave area can be guaranteed by the method based on node position optimization. In the case of too large or too small a node angle in a grid cell, for example, the inner angle on the boundary is close to 180. The number (or degree) of the elements around the internal node is greater than 5 or less than 3. It is difficult to improve the quality of the mesh by simply moving the position of the node. That is to change the connection of cell nodes to improve the quality of the grid. In this paper, a topology optimization method based on boundary optimization, shape optimization, connectivity optimization and dimension optimization is proposed. In the aspect of boundary optimization, a method of combining the boundary element with the adjacent element is proposed for the element near the triangle on the boundary, and then the merged local mesh is regenerated according to the set template. The element near the triangle on the boundary can be eliminated. For shape optimization, the angle is greater than 160. The method of merging and regenerating the large angle unit and the adjacent unit with large angle is proposed, which can eliminate the large angle unit and the illegal unit. In the aspect of connectivity optimization, various node connectivity modes are summarized. According to the degree values of nodes and their surrounding nodes, the existing patterns are matched. By changing the node connectivity of the unit, the degree of each node is close to the ideal value (internal node is 4). The quality of grid is improved significantly. In the aspect of dimension optimization, by merging with adjacent elements, the diagonal position of hexagonal region can be changed or the hexagonal region can be decomposed into three elements in view of the element whose ratio of the longest edge to the shortest edge is too large. It can effectively reduce the difference of mesh size and improve the quality of mesh. Based on the methods of node location optimization and mesh topology optimization proposed in this paper, a quadrilateral mesh quality optimization program based on VS2012 is developed with C language, and the actual quadrilateral mesh is optimized. The results show that, The optimization method proposed in this paper can effectively eliminate the units with poor quality and improve the mesh quality significantly.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TB115
【相似文献】
相关期刊论文 前10条
1 潘子杰,杨文通;有限元四边形网格划分的两种算法[J];机械设计与制造;2002年02期
2 张清萍,尚勇,赵国群;二维全四边形网格的自动生成算法[J];山东大学学报(工学版);2002年03期
3 吴丽娟;赵丽娟;李柳;;海量空间数据点四边形网格优化[J];辽宁工程技术大学学报(自然科学版);2009年01期
4 王水林,葛修润,章光,庞作会;复杂区域四边形网格生成的基本模板法[J];岩石力学与工程学报;1999年04期
5 吴淑芳,李占国,管力锐,王艳春;四边形网格被直线切割的混合调整法[J];长春光学精密机械学院学报;1998年02期
6 马新武;王芳;赵国群;;具有内部特征约束的四边形网格生成方法[J];计算力学学报;2012年06期
7 何玉香,王学林,胡于进;一种新的四边形的生成算法[J];华中科技大学学报(自然科学版);2003年02期
8 刘晓;骆少明;吕惠卿;;超限映射法的四边形网格划分技术研究[J];广东工业大学学报;2006年01期
9 付成华;周洪波;;多介质复杂区域四边形网格自动剖分算法及应用[J];长江科学院院报;2012年07期
10 王世军,黄玉美,张广鹏;一种全四边形有限元网格生成方法─—堆砌法[J];机械工程学报;2000年10期
相关会议论文 前5条
1 郭晓霞;刘建生;陈慧琴;;平面任意区域四边形网格的自动生成方法[A];第一届全国几何设计与计算学术会议论文集[C];2002年
2 吴丽娟;郑冕;张彩明;;四边形网格划分过程中的边界处理[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(下册)[C];2006年
3 施峰;张明磊;孙树立;;基于“型-操作”的平面四边形网格的拓扑优化[A];北京力学会第18届学术年会论文集[C];2012年
4 吴丽娟;齐维毅;李继;;海量空间数据点四边形网格划分边界优化算法的实现[A];中国几何设计与计算新进展2007——第三届中国几何设计与计算大会论文集[C];2007年
5 聂存云;舒适;;非结构四边形网格下的一类保对称有限体元格式[A];全国计算物理学会第六届年会和学术交流会论文摘要集[C];2007年
相关硕士学位论文 前10条
1 杨森;基于特征的四边形网格生成[D];大连理工大学;2006年
2 马良;具有内部特征约束的四边形网格生成方法研究[D];山东大学;2016年
3 孙涛;基于子映射法的四边形网格生成方法研究[D];山东大学;2016年
4 王立亚;四边形网格质量优化的研究[D];山东大学;2016年
5 李文升;一种基于曲面聚类分片的四边形网格生成方法[D];大连理工大学;2006年
6 王龙;一类非结构任意四边形网格自动生成[D];湘潭大学;2001年
7 唐友宏;一种全四边形网格生成算法及其在船舶有限元中的应用[D];武汉理工大学;2002年
8 郭新强;边界面法四边形网格生成研究与应用[D];湖南大学;2011年
9 蒋子飞;一种四边形网格简化算法的实现与改进[D];山东大学;2014年
10 刘虎;基于特征约束的四边形网格划分算法研究与实现[D];南京航空航天大学;2007年
,本文编号:2367642
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2367642.html