崩塌落石沿直线型斜面的运动特征室内试验研究
[Abstract]:The collapse disasters in the southwest mountainous areas occur frequently, sudden strong, high randomness, often bring huge damage to the roads and houses, and even endanger the lives of the people in the affected areas. In order to adapt to the rapid development of economy, it is often necessary to carry out the prevention and control work of collapse and falling stone, and the movement characteristic of collapse and falling stone is an important index to carry out the protection design. Based on the field investigation of 5 groups of collapses in Dafo Village of Longquanyi Shanquan Town, this paper studies the characteristics of collapse disaster and analyzes the influencing factors of rock falling movement. The instability model of falling rock, the height of collapse source, slope gradient and material composition of slope are used as variables to design and study the characteristics of falling rock movement. The horizontal motion distance, deviation ratio and maximum spring height of these variables to rock fall are analyzed. Maximum velocity of motion, the impact of the landing area. At the same time, based on the experimental data, the prediction models of falling, toppling and sliding are established based on the wavelet neural network, and the distance of rock falling is predicted. The predicted values are converted to the values of the same scale as the collapse site and compared with the actual measurements. Finally, based on the results of laboratory tests, some suggestions for the prevention and treatment of 5 groups of collapse in Dafo Village are put forward. The main contents and results of this paper are as follows: (1) different instability models, height of collapse source and material composition on slope have different effects on the movement characteristics of rock fall. The height of the collapse source is insensitive to the horizontal movement distance, the migration ratio and the maximum spring height; The effect of falling and toppling on the horizontal movement distance, the deviation ratio and the maximum spring height is stronger than that of the sliding type, but it has little relation to the maximum velocity of movement. When the slope is 50-60 掳, the distance of horizontal movement is relatively large, and the maximum is reached when the slope is 50 掳. When the slope is 40-60 掳, it is easy to produce greater lateral migration. When the slope is 40-70 掳, the maximum spring height is positively correlated with the slope, and the maximum velocity of motion is always positively correlated with the slope. Turf slope can effectively reduce the leaping height. (2) different motion modes correspond to different slope critical values. When the slope is 20-40 掳, jumping, sliding, rolling or combined motion between each other occur. When the slope is 40-50 掳, the motion mode is a combination motion between jumping and sliding or between two pairs, and rolling rarely occurs. When the slope is 50-70 掳, pure slippage and pure jump occur, and the combined motion of sliding and jumping rarely occurs, and basically does not roll. (3) based on wavelet neural network, the prediction model of rock drop distance is proposed based on falling model. Toppling prediction model, sliding prediction model, The model can predict the movement distance of falling stone in engineering examples. (4) based on the research results of indoor test, some suggestions for prevention and control of falling stone are put forward: according to the results of experimental research and the location of residential buildings, passive protection lines are set up. Different energy levels and different protective heights of the system, The "man" type retaining wall is designed on the slope surface of the corresponding slope in residential buildings, and the stone falling trough is excavated on the inner side of the highway near the slope. The active protection system is adopted for the slope with large distribution of dangerous rock.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P642.21
【参考文献】
相关期刊论文 前10条
1 李骅锦;许强;何雨森;魏勇;;WA联合ELM与OS-ELM的滑坡位移预测模型[J];工程地质学报;2016年05期
2 李骅锦;许强;何雨森;彭大雷;亓星;赵宽耀;;甘肃黑方台滑坡滑距参数的BP神经网络模型[J];水文地质工程地质;2016年04期
3 孙新坡;何思明;刘恩龙;苏有文;;基于离散元和有限差分耦合算法的崩塌体和结构碰撞预测分析[J];工程力学;2014年12期
4 何思明;王东坡;吴永;欧阳朝军;;崩塌滚石灾害的力学机理与防治技术[J];自然杂志;2014年05期
5 程强;苏生瑞;;汶川地震崩塌滚石坡面运动特征[J];岩土力学;2014年03期
6 宗全利;夏军强;邓春艳;许全喜;;基于BSTEM模型的二元结构河岸崩塌过程模拟[J];四川大学学报(工程科学版);2013年03期
7 王林峰;陈洪凯;唐红梅;;危岩稳定可靠度计算方法研究[J];人民长江;2012年23期
8 杨志华;兰恒星;张永双;;基于GIS-GOCAD耦合技术的三维地质建模[J];地理与地理信息科学;2012年05期
9 王智;唐红梅;;危岩崩落激振作用下的质点峰值振动速度[J];重庆交通大学学报(自然科学版);2012年03期
10 程强;;汶川强震区公路沿线地震崩滑灾害发育规律研究[J];岩石力学与工程学报;2011年09期
相关博士学位论文 前6条
1 贺凯;塔柱状岩体崩塌机理研究[D];长安大学;2015年
2 成良霞;“5.12”汶川地震后映卧公路边坡崩塌灾害形成机理与危险性评估研究[D];长安大学;2014年
3 黄勇;高寒山区岩体冻融力学行为及崩塌机制研究[D];成都理工大学;2012年
4 贺咏梅;高陡岩质斜坡崩落岩体运动参数、击浪高度及其对工程影响研究[D];成都理工大学;2011年
5 向欣;边坡落石运动特性及碰撞冲击作用研究[D];中国地质大学;2010年
6 叶四桥;隧道洞口段落石灾害研究与防治[D];西南交通大学;2008年
相关硕士学位论文 前8条
1 王庆瀚;下穿隧道边坡危岩崩塌滚石运动机理及安全防护[D];山东大学;2015年
2 丁冰冰;岩质边坡危岩落石室内模型试验研究[D];西南交通大学;2015年
3 冯理;基于生态文明理念的四川省通江县广纳小城镇规划研究[D];成都理工大学;2014年
4 胡聪;高陡边坡危岩体失稳机理及其崩塌滚石运动规律[D];山东大学;2014年
5 毕芬芬;中缓倾内上硬下软型边坡失稳机理物理模拟研究[D];成都理工大学;2013年
6 柳宇;滚石坡面运动恢复系数研究[D];成都理工大学;2012年
7 张涛;BP神经网络在测井解释中的应用研究[D];西北大学;2010年
8 高海伟;危岩崩塌的链式演变过程及信息跟踪技术应用[D];重庆交通大学;2008年
,本文编号:2424138
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2424138.html