基于多目标遗传粒子群混合算法求解混合流水车间调度问题研究
[Abstract]:With the rapid development of the global economy, the manufacturing industry is facing new challenges. In order to be invincible in the fierce competition, enterprises must respond to the market with the lowest cost, the best quality, the fastest speed and the best service. By improving the production scheduling scheme, the production efficiency of the enterprise can be effectively improved and the market competitiveness of the enterprise can be enhanced, thus the scheduling problem emerges as the times require. The problem of job-shop scheduling is to solve the problem of how to make use of limited resources to determine the processing order and time of workpieces and equipment under the premise of satisfying various production constraints, so as to optimize the performance index. However, in the actual production scheduling process of an enterprise, the multi-objective optimization problem will generally exist because it does not only consider only one goal, but also considers more than one goal at the same time. Therefore, the study of multi-objective hybrid flow shop scheduling problem (Hybrid Flow-Shop Scheduling Problem, HFSP) is of great significance. Based on the fusion of genetic algorithm (Genetic Algorithm, GA) and particle swarm optimization (Particle Swarm Optimization, PSO), a hybrid multi-objective genetic particle swarm optimization algorithm for HFSP is proposed in this paper. Genetic algorithm has strong robustness and population optimization ability, but it has the problems of premature convergence and low search efficiency in late stage. Particle swarm optimization has the characteristics of simple calculation and high efficiency, but it is easy to precocity and fall into local optimization. Based on the analysis of the advantages and disadvantages of genetic algorithm and particle swarm optimization algorithm, the advantages and disadvantages of genetic algorithm and particle swarm optimization algorithm are analyzed, and the excellent population optimization ability of genetic algorithm is used to grasp the direction of evolution in general. According to the characteristics of simple calculation and high efficiency of particle swarm optimization algorithm, First, the independent evolution of multiple particle swarm groups is carried out, and the better individuals are searched out quickly and comprehensively. The individual migration is also carried out among the particle swarm to expand the search field, and then the optimal individuals of each particle swarm are collected to make up the initial population of genetic algorithm. Genetic manipulation is carried out, and then the superior individuals are used to replace the inferior individuals in the population, so that the target optimal solution can be found efficiently in this cycle. In this paper, based on the detailed analysis of HFSP, a complete set of multi-objective genetic particle swarm hybrid algorithm is proposed. In this paper, a hybrid multi-objective genetic particle swarm algorithm is used to solve HFSP,. Firstly, the HFSP model is established according to the common optimization objectives in enterprise production. On this basis, the classical examples in HFSP are used to test, and the efficiency of the algorithm is analyzed and evaluated. The conclusion of the algorithm is compared with other algorithms, and the results show that the algorithm has obvious advantages and can effectively solve HFSP, has a good application prospect.
【学位授予单位】:大连交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP18;TB497
【相似文献】
相关期刊论文 前10条
1 潘全科;赵保华;屈玉贵;毕于慧;;一类解决无等待流水车间调度问题的蚁群算法[J];计算机集成制造系统;2007年09期
2 何利;刘永贤;刘笑天;;粒子群优化算法求解车间调度问题[J];机械与电子;2007年08期
3 王秋芬;杨泽平;梁道雷;;一种改进的车间调度问题算法[J];科学技术与工程;2013年11期
4 苏子林;;车间调度问题及其进化算法分析[J];机械工程学报;2008年08期
5 徐建有;董乃群;顾树生;;带有顺序相关调整时间的多目标流水车间调度问题[J];计算机集成制造系统;2013年12期
6 康宁,王凤儒,刘丕娥,常会友;有交货期的单件车间调度问题的逆序算法[J];系统工程理论与实践;1999年12期
7 马邦雄;叶春明;;利用猫群算法求解流水车间调度问题[J];现代制造工程;2014年06期
8 曲媛;杨晓伟;;关于流水车间调度问题的综述[J];中小企业科技;2007年08期
9 何利;刘永贤;谢华龙;张禹;;面向IC生产模式的Job Shop调度问题的研究[J];制造技术与机床;2008年12期
10 董薇;张淑丽;;Matlab/Visual C++混合编程求解单件车间调度问题[J];机械工程师;2008年03期
相关会议论文 前3条
1 邹逢兴;曾令李;高政;刘烽;;一种求解混合流水车间调度问题的分布式方法[A];2009中国控制与决策会议论文集(2)[C];2009年
2 朱婧;;求解车间调度问题的改进模拟退火算法[A];第五届(2010)中国管理学年会——商务智能分会场论文集[C];2010年
3 洪宗友;庞哈利;;No-wait流水车间调度问题的一种启发式算法[A];2007中国控制与决策学术年会论文集[C];2007年
相关博士学位论文 前6条
1 何利;即时定制生产模式及其车间调度问题的研究[D];东北大学;2008年
2 黄英杰;基于目标级联法和智能优化算法的车间调度问题研究[D];华南理工大学;2012年
3 刘延风;置换流水车间调度问题的几种智能算法[D];西安电子科技大学;2012年
4 常桂娟;基于微粒群算法的车间调度问题研究[D];青岛大学;2008年
5 崔U,
本文编号:2432346
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2432346.html