专业遥感图像分类方法的研究及应用
发布时间:2019-03-02 12:24
【摘要】:遥感技术利用地物微波辐射特性,能快速、大范围获取地表地物信息。遥感器分辨率和计算机计算能力的大幅度提高,为遥感技术的更加广泛和深入应用成为可能,然而结合图形学理论的遥感图像处理的计算机应用却相对滞后,阻碍了遥感技术的推广。特别是遥感图像自动解译中的图像分类技术是遥感技术深入应用的关键和核心内容。因此,从大规模遥感数据中快速、精准、方便地提取所需要的要素信息已成为一个重要的课题,而使用遥感技术获取土地利用的分类信息成为这方面研究的热点。 本文通过图像处理技术对遥感图像信息中各种地物信息的辨识和提取,进而实现智能化软件程序所实现的对遥感图像分类在土地利用中研究中的应用。本文在完整的遥感图像处理平台ENVI上,对甘肃省白银地区的遥感图像数据按照完整的遥感数据处理流程,经过图像预处理、增强处理以及多波段图像的融合比较处理,为遥感图像数据的分类提供了较高质量的数据基础,再经过图像分类,最终获得了白银地区土地利用的变化情况,并对变化做出相应的分析。 通过研究表明,这样的分类方法对大规模遥感数据的处理效率高,成本低廉,辨识准确率能够满足应用要求。通过对遥感图像的分析处理,揭示了土地利用类型转化的内部驱动力机制,为土地资源的可持续利用提供宝贵的信息。同时本研究结果也可为政府相关部门在制定经济策略时提供有用价值的土地利用信息。
[Abstract]:Remote sensing technology makes use of the microwave radiation characteristics of ground objects, and can obtain surface features information quickly and in a wide range. It is possible for remote sensing technology to be applied more widely and deeply with the great improvement of resolution and computing ability of remote sensing sensor. However, the computer application of remote sensing image processing combined with graphics theory lags behind. It hinders the popularization of remote sensing technology. In particular, the image classification technology in the automatic interpretation of remote sensing images is the key and core content of the in-depth application of remote sensing technology. Therefore, rapid, accurate and convenient extraction of essential information from large-scale remote sensing data has become an important subject, and the use of remote sensing technology to obtain land-use classification information has become a hot spot in this field. This paper uses image processing technology to identify and extract all kinds of ground information from remote sensing image information, and then realizes the application of remote sensing image classification realized by intelligent software program in the research of land use. In this paper, based on the complete remote sensing image processing platform ENVI, the remote sensing image data in Baiyin area of Gansu Province are processed according to the complete remote sensing data processing flow, after image preprocessing, enhancement processing and multi-band image fusion comparison processing. It provides a high quality data base for the classification of remote sensing image data, and finally obtains the land use change in Baiyin area by image classification, and makes the corresponding analysis of the change. The research shows that the classification method has high efficiency and low cost for large-scale remote sensing data processing, and the accuracy of identification can meet the requirements of application. Through the analysis and processing of remote sensing images, the internal driving force mechanism of land use type transformation is revealed, which provides valuable information for the sustainable utilization of land resources. At the same time, the results of this study can also provide useful land use information for government departments in formulating economic strategies.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP751
本文编号:2433049
[Abstract]:Remote sensing technology makes use of the microwave radiation characteristics of ground objects, and can obtain surface features information quickly and in a wide range. It is possible for remote sensing technology to be applied more widely and deeply with the great improvement of resolution and computing ability of remote sensing sensor. However, the computer application of remote sensing image processing combined with graphics theory lags behind. It hinders the popularization of remote sensing technology. In particular, the image classification technology in the automatic interpretation of remote sensing images is the key and core content of the in-depth application of remote sensing technology. Therefore, rapid, accurate and convenient extraction of essential information from large-scale remote sensing data has become an important subject, and the use of remote sensing technology to obtain land-use classification information has become a hot spot in this field. This paper uses image processing technology to identify and extract all kinds of ground information from remote sensing image information, and then realizes the application of remote sensing image classification realized by intelligent software program in the research of land use. In this paper, based on the complete remote sensing image processing platform ENVI, the remote sensing image data in Baiyin area of Gansu Province are processed according to the complete remote sensing data processing flow, after image preprocessing, enhancement processing and multi-band image fusion comparison processing. It provides a high quality data base for the classification of remote sensing image data, and finally obtains the land use change in Baiyin area by image classification, and makes the corresponding analysis of the change. The research shows that the classification method has high efficiency and low cost for large-scale remote sensing data processing, and the accuracy of identification can meet the requirements of application. Through the analysis and processing of remote sensing images, the internal driving force mechanism of land use type transformation is revealed, which provides valuable information for the sustainable utilization of land resources. At the same time, the results of this study can also provide useful land use information for government departments in formulating economic strategies.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 严振英;;三江源天然草地TM影像植被指数分析[J];安徽农业科学;2011年10期
2 李建军;吴斌;;应用归一化差值植被指数(NDVI)预处理后的图象进行分类研究初探[J];北京林业大学学报;1996年S2期
3 张智韬;李援农;邓国庆;李建利;兀伟;刘小强;;TM影像土地利用分类提取应用研究[J];测绘标准化;2005年03期
4 毛可标,刘凤德,苏玉扬,庞华;遥感图像在土地利用更新中的应用研究——以里下河地区防汛信息系统(LXFPGIS)为例[J];测绘科学;2000年02期
5 熊桢,郑兰芬,童庆禧;分层神经网络分类算法[J];测绘学报;2000年03期
6 潘建平;叶焕倬;;基于遥感分类的植被覆盖度提取[J];测绘信息与工程;2007年06期
7 杨梅;张广录;侯永平;;区域土地利用变化驱动力研究进展与展望[J];地理与地理信息科学;2011年01期
8 胡玉福;邓良基;匡先辉;王鹏;何莎;熊玲;;基于纹理特征的高分辨率遥感图像土地利用分类研究[J];地理与地理信息科学;2011年05期
9 陈百明;张凤荣;;我国土地利用研究的发展态势与重点领域[J];地理研究;2011年01期
10 安晓亚;朱蕊;赵毅;陈欣;;GDI+在遥感数据处理中的应用[J];测绘科学;2008年S3期
,本文编号:2433049
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2433049.html