全色遥感影像地物信息自动分类方法研究
[Abstract]:With the rapid development of China's economy, the development of urbanization policy is being carried out intensively, so the demand for land resources is also increasing. Using remote sensing images to classify and extract typical urban features has become a mainstream trend. It is one of the most important research topics to use appropriate algorithms to extract urban typical features with high accuracy. In this paper, "Jilin No. 1" optical A-star panchromatic remote sensing image is used to classify and extract four typical features of buildings, roads, woodlands and grasslands in the region using pixel-based and object-oriented classification methods. The main works are as follows: (1) for pixel-based classification methods, the minimum distance method, maximum likelihood method, BP neural network method, support vector product method, ISODATA algorithm and K-means algorithm for supervised classification are mainly studied. (2) for the object-oriented classification method, according to the spectral, shape and texture features of the image, the segmentation technology based on Sobel edge operator and the segmentation-fusion algorithm based on Full Lambda-Schedule are used to segment the image. Thirdly, the classification accuracy evaluation method of confusion matrix is studied. According to the classification results of each algorithm, the overall classification accuracy is used, and the fuzzy classification method is used to set up the information extraction rules. (3) the classification accuracy evaluation method of the confusion matrix is studied, and the overall classification accuracy is used for each algorithm. The Kappa coefficient is used to evaluate the overall classification accuracy. The classification accuracy of single-class ground objects is evaluated by using three indexes, namely, the error of classification, the error of missing classification and the index of success of one-class classification. The experimental results and data show that for pixel-based classification methods, the most accurate classification method is the maximum likelihood method in supervised classification, the overall classification accuracy is 83.868%, the Kappa coefficient is 0.7561, for roads, buildings, The single classification accuracy of the maximum likelihood method is the highest when the three kinds of ground objects are extracted, and the classification accuracy of the support vector product method is the highest when the forest land is extracted by the single class method. For the object-oriented classification method, the overall classification accuracy is 94.4721%, and the Kappa coefficient is 0.903. On the whole, the classification accuracy of object-oriented method is higher than that of pixel-based method. The research results of this paper have a very important guiding significance for the development of urbanization in Changchun, and the classification and processing of the images acquired by Jilin 1 satellite also play a guiding role in the classification of the images obtained by Jilin 1 satellite.
【学位授予单位】:长春理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 杨朝斌;张树文;卜坤;于灵雪;颜凤芹;常丽萍;杨久春;;高分辨率遥感影像在城市LUCC中的应用[J];中国科学院大学学报;2016年03期
2 农丽萍;;浅谈遥感技术在地理国情普查中的应用[J];科技展望;2016年10期
3 张莹;;遥感影像监督分类和非监督分类方法探讨[J];黑龙江科技信息;2016年02期
4 张召才;;吉林一号卫星组星[J];卫星应用;2015年11期
5 胡德;郭刚正;;最小二乘法、矩法和最大似然法的应用比较[J];统计与决策;2015年09期
6 贾明明;王宗明;张柏;丁智;;综合环境卫星与MODIS数据的面向对象土地覆盖分类方法[J];武汉大学学报(信息科学版);2014年03期
7 黄鹤;冯毅;张萌;李明涛;;天绘一号卫星影像的融合及评价研究[J];测绘通报;2013年01期
8 冯登超;陈刚;肖楷乐;杜文雅;吴新颖;;基于最小距离法的遥感图像分类[J];北华航天工业学院学报;2012年03期
9 黄立贤;沈志学;;高光谱遥感图像的监督分类[J];地理空间信息;2011年05期
10 贾坤;李强子;田亦陈;吴炳方;;遥感影像分类方法研究进展[J];光谱学与光谱分析;2011年10期
相关博士学位论文 前1条
1 阳爱民;模糊分类模型的研究[D];复旦大学;2005年
相关硕士学位论文 前10条
1 王鹏;遥感影像的ISODATA分类算法的并行化研究[D];河南大学;2016年
2 杨艳青;不同地貌单元下遥感影像分类方法的比较研究[D];山西师范大学;2016年
3 曹密媛;基于遥感影像的地物要素智能识别与提取研究[D];长安大学;2015年
4 邓海龙;高分辨率遥感图像面向对象分割与分类方法研究[D];中国地质大学(北京);2015年
5 张辉;基于BP神经网络的遥感影像分类研究[D];山东师范大学;2013年
6 陈涤非;基于面向对象方法的地表覆被分类研究[D];成都理工大学;2013年
7 陈宝楼;K-Means算法研究及在文本聚类中的应用[D];安徽大学;2013年
8 杨宁;高分辨率影像面向对象分类特征选择方法研究[D];西安科技大学;2012年
9 申真;基于面向对象的高分辨率遥感影像道路提取研究[D];江西理工大学;2012年
10 杨涛;基于BP神经网络法的煤矿安全评价系统研究[D];太原理工大学;2012年
,本文编号:2438804
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2438804.html