基于梯度提升模型的负相关学习算法的研究与应用
[Abstract]:The first work of the paper is to study the integration of learning. In the field of machine learning, we call a system or model that has the ability to learn from empirical knowledge, called a learner. In general, it is much less expensive to train a weaker model than to train a more powerful model. Integrated learning is a kind of special machine learning method, its idea is not to train a strong learner directly, but by combining a group of weak learner to get an integrated learner with strong learning ability. The performance of the integrated learning algorithm depends on two factors: the performance of the base-based learner and the difference between the base-based learning devices. At present, the commonly used integrated learning algorithm includes Bagging, Boosting and the like, while the performance of each base learner is improved, the difference between the base-learning devices is maintained in a recessive way, so that the performance of the final integrated learner is optimized. Negative correlation learning (NCL) is a kind of integrated learning algorithm, which is commonly used in the integration of neural network, which is introduced into the loss function of the neural network as a dominant measure standard, and then influences the training of the neural network. The performance and diversity of the base neural network can be balanced by adjusting the influence factors, so as to obtain an integrated neural network model with optimal performance. Based on the idea of NCL, we put forward a new kind of integrated learning calculation The first point of NCL is to use the neural network as the base learner, and most of the research on the NCL is based on the neural network as the base learning model. The main reason is that the neural network has a dominant loss function. The BP algorithm of training neural network is a kind of optimization calculation using gradient descent method to minimize the loss function. This paper compares the similarity between the neural network and another commonly used learning model: the gradient lifting machine (GBM), and puts forward the idea of using the GBM instead of the neural network to practice the negative correlation study, and designs a new integrated learning algorithm: GB-NC L. The design idea and detailed steps of the GB-NCL algorithm are given in this paper, and the classification of the NCL algorithm and the gradient lifting algorithm based on the neural network are compared by the experiment. The results show that the GB-NCL algorithm has better performance compared with the two algorithms. The second work of the paper is to design and implement a new classification algorithm for high-spectral remote sensing image classification based on the GB-NCL algorithm: RCA The characteristic of high-spectral remote sensing image classification is that the mark sample is small, the unlabeled sample is more, and the pixel point of the remote sensing image of the artificial mark belongs to the cost of the object class. The first one, using the active learning algorithm, selects the most valuable pixel points from a large number of unlabeled samples to let the human expert mark the place to which it belongs. The feature of this method is that the quality of the new training samples is high (the class label is 100% correct), but Second, with a semi-supervised learning algorithm, the trained classifier is used to give some unlabeled sample-like reference numbers, and they are treated as real-available samples, added to the training set, and we call it "trunk>" dummy mark " trunk > Samples. This type of algorithm can greatly improve the number of training samples, but cannot guarantee the class label of the newly added pseudo-marker sample. It is correct. The quantity is too large and the quality is not good. This is a semi-supervised learning algorithm. The feature of this paper is to combine the active learning with the semi-supervised learning, and to introduce a set of "pseudo-"-labeled sample verification mechanism to check the pseudo-mark samples introduced in the semi-supervised learning and to use the non-qualified pseudo-marker samples. The method can not only obtain enough training samples, but also guarantee the training sample. The quality of this set. With a more complete set of training, the trained classifiers will naturally Better performance. According to this idea, we designed RCA for hyperspectral remote sensing in the paper The SSL algorithm. RCASSL not only uses the tagged samples while training the classifier, but uses semi-supervised learning to introduce Pseudo-mark samples. We use the GB-NCL algorithm to check the pseudo-marker samples introduced by the semi-supervised learning method to improve the pseudo-mark sample. We compared the RCASSL algorithm, the MCLU-ECBD algorithm and the RCASSL-No on the high-spectral remote sensing data set. The PLV algorithm. The MCLU-ECBD algorithm is a common master The RCASSL-NoPLV algorithm is an RCA to remove the pseudo-marker-like verification link. The results of the experiment show that, in the case of introducing the same number of tag samples, the algorithm of the RCASSL The result of comparison between RCASSL and MCLU-ECBD shows that combining semi-supervised learning can improve the performance of active learning algorithm, and the comparison between RCASSL and RCASSL-NoPLV shows that we use the GB-NCL algorithm to implement the pseudo-mark verification machine.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP18;TP751
【共引文献】
相关期刊论文 前10条
1 蔡坤琪;;基于相关鉴别分析和随机森林的人脸识别方法[J];安徽电子信息职业技术学院学报;2012年01期
2 潘希姣;;多子群粒子群集成神经网络[J];安徽建筑工业学院学报(自然科学版);2007年02期
3 王尔丹;人群运动与密度估计技术研究[J];安全;2005年03期
4 冯学军;;最小二乘支持向量机的研究与应用[J];安庆师范学院学报(自然科学版);2009年01期
5 周德强;冯建中;;建筑物沉降预测的改进Verhulst模型研究[J];地下空间与工程学报;2011年01期
6 王立平;孔小梅;付梦印;王美玲;张甲文;姜明;;Temperature Drift Modeling of FOG Based on LS-WSVM[J];Journal of China Ordnance;2008年03期
7 王亮;胡静涛;;基于LS-SVM的光刻过程R2R预测控制方法[J];半导体技术;2012年06期
8 田盛丰;基于核函数的学习算法[J];北方交通大学学报;2003年02期
9 焦健;瞿有利;;知网的话题更新与跟踪算法研究[J];北京交通大学学报;2009年05期
10 林正奎;唐焕玲;鲁明羽;王敬东;;基于特征多视图提升Naive Bayesian的Boosting改进算法[J];北京交通大学学报;2009年06期
相关会议论文 前10条
1 宋海鹰;桂卫华;阳春华;;基于核偏最小二乘的简约最小二乘支持向量机及其应用研究[A];第二十六届中国控制会议论文集[C];2007年
2 宋海鹰;桂卫华;阳春华;;基于最小二乘支持向量机的Hammerstein-Wiener模型辨识[A];第二十六届中国控制会议论文集[C];2007年
3 ;Inverse System Control of Nonlinear Systems Using LS-SVM[A];第二十六届中国控制会议论文集[C];2007年
4 ;A Novel Proximal Support Vector Machine and Its Application in Radar Target Recognition[A];第二十六届中国控制会议论文集[C];2007年
5 ;A CDMA Signal Receiver Based on LS-SVM[A];第二十六届中国控制会议论文集[C];2007年
6 ;LS-SVM Based Stable Generalized Predictive Control[A];第二十七届中国控制会议论文集[C];2008年
7 阎纲;梁昔明;龙祖强;李翔;;一种新的提前一步预测控制算法[A];第二十七届中国控制会议论文集[C];2008年
8 孙玉坤;王博;丁慎平;;基于模糊支持向量机的赖氨酸发酵软测量[A];第二十七届中国控制会议论文集[C];2008年
9 ;GA Based LS-SVM Classifier for Waste Water Treatment Process[A];第二十七届中国控制会议论文集[C];2008年
10 柴伟;孙先仿;乔俊飞;;有监督的等距映射和k近邻分类结合用于集员辨识[A];第二十九届中国控制会议论文集[C];2010年
相关博士学位论文 前10条
1 赵莹;半监督支持向量机学习算法研究[D];哈尔滨工程大学;2010年
2 于化龙;基于DNA微阵列数据的癌症分类技术研究[D];哈尔滨工程大学;2010年
3 李建平;面向异构数据源的网络安全态势感知模型与方法研究[D];哈尔滨工程大学;2010年
4 孟宇龙;基于本体的多源异构安全数据聚合[D];哈尔滨工程大学;2010年
5 邬俊;基于交互式语义推理的图像检索算法研究[D];大连海事大学;2010年
6 李书艳;单点氨基酸多态性与疾病相关关系的预测及其机制研究[D];兰州大学;2010年
7 张明;电能质量扰动相关问题研究[D];华中科技大学;2010年
8 姚志明;基于步态触觉信息的身份识别研究[D];中国科学技术大学;2010年
9 许伟;基于进化算法的复杂化工过程智能建模方法及其应用[D];华东理工大学;2011年
10 向国齐;支持向量回归机代理模型设计优化及应用研究[D];电子科技大学;2010年
相关硕士学位论文 前10条
1 曾传华;基于颜色和纹理特征的竹条分级方法研究[D];华中农业大学;2010年
2 马冉冉;集成学习算法研究[D];山东科技大学;2010年
3 王萍;语音情感识别研究[D];山东科技大学;2010年
4 田文娟;基于支持向量机的人民币序列号识别方法的研究[D];山东科技大学;2010年
5 吕万里;中文文本分类技术研究[D];山东科技大学;2010年
6 孟培培;基于3S的土地督察信息系统研究[D];山东科技大学;2010年
7 李海清;支持向量机在金融市场预测中的应用[D];辽宁师范大学;2010年
8 江达秀;基于HMAX模型的人脸表情识别研究[D];浙江理工大学;2010年
9 石国强;基于规则的组合分类器的研究[D];郑州大学;2010年
10 李光远;基于在线聚类和最小二乘支持向量机的模糊建模方法研究[D];郑州大学;2010年
,本文编号:2446666
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2446666.html