当前位置:主页 > 管理论文 > 工程管理论文 >

多层次系统代理模型的不确定性量化及序列采样方法研究

发布时间:2019-05-18 23:01
【摘要】:随着现代工业的迅速发展,复杂系统的设计通常会涉及众多的决策变量和因素。在传统的“All-In-One(AIO)”求解方法中,对复杂系统中所有的设计变量同时进行优化,导致优化设计模型十分复杂,计算效率非常低。为了减少复杂系统分析和设计过程中的计算复杂度,提高计算效率,并实现复杂系统的并行分析和设计,往往可以将复杂系统按照功能逻辑和物理组成结构分解成若干个相互之间具有层次型关系的子系统(也称为子模型),然后对各个子系统独立地进行分析和设计。对于各个子系统若直接采用计算机仿真技术(如:结构有限元仿真、材料分子动力学仿真),其计算量将非常大,因此工程中普遍使用代理模型(Metamodel)代替子系统真实仿真模型。然而,由于初始采样点数量的限制,代理模型与真实模型之间必然存在代理模型不确定性(Metamodeling Uncertainty),而代理模型不确定性对系统分析和设计有着重要影响。在过去的几十年里,学者们已经研究并提出了很多种代理模型及序列采样方法。但到目前为止,对于多层次复杂系统的设计中代理模型不确定性及提高代理模型精确度(Fidelity)的研究非常有限。围绕这一问题,本论文开展了多层次系统代理模型的不确定性量化及面向多层次系统代理模型的序列采样方法的研究。具体的研究内容和主要创新如下:(1)在多层次复杂系统中,各层子系统的代理模型不确定性将从底层逐层传递到系统顶层的响应中。为了分析多层次复杂系统中各层子系统代理模型的不确定性对系统顶层响应的影响,本论文提出了一种多层次系统代理模型的不确定性量化方法,并推导出了各个子系统代理模型不确定性对系统顶层响应不确定性的解析表达式。(2)为了降低多层次系统代理模型的不确定性量化过程中的计算量,提高计算效率,本文提出了采用数值积分计算代理模型不确定性传递问题的思路,并从计算效率和计算精度两方面对几种常用的数值积分方法在进行对比,最终选取了高斯-埃尔米特积分方法并将其应用在多层次系统代理模型不确定性传递的计算中。(3)现有的序列采样方法大多仅考虑单层代理模型的不确定性及精确度提高策略。然而,这种方法忽略了多层次系统中各层子系统代理模型间的不确定性传递问题,所选取的采样点往往并不能最大程度地提高多层次系统代理模型的精确度。基于这种情况,本文提出了面向多层次系统代理模型的序列采样新方法。该方法综合考虑了各个代理模型的不确定性,选取对整个系统不确定性影响最大的位置采集新的样本点,进而更新系统各层代理模型,直到整个系统的代理模型的精确度达到预定要求。与常规的采样方案对比发现:在新增样本点有限的情况下,本论文提出的方法对新样本点的分配方案更加合理,能最大程度地提高系统代理模型的精确度。
[Abstract]:With the rapid development of modern industry, the design of complex systems usually involves many decision variables and factors. In the traditional "All-In-One (AIO)" method, all the design variables in the complex system are optimized at the same time, which leads to the complexity of the optimization design model and the low computational efficiency. In order to reduce the computational complexity in the process of complex system analysis and design, improve the computational efficiency, and realize the parallel analysis and design of complex system, Often, the complex system can be decomposed into several subsystems (also known as submodels) with hierarchical relationship with each other according to the functional logic and physical composition structure, and then each subsystem can be analyzed and designed independently. If the computer simulation technology is used directly for each subsystem (such as structural finite element simulation, material molecular dynamics simulation), the calculation amount will be very large. Therefore, agent model (Metamodel) is widely used to replace the real simulation model of subsystems in engineering. However, due to the limitation of the number of initial sampling points, there must be agent model uncertainty between the agent model and the real model (Metamodeling Uncertainty), and the uncertainty of the agent model has an important impact on the system analysis and design. In the past few decades, scholars have studied and proposed many proxy models and sequence sampling methods. However, up to now, the research on the uncertainty of agent model and improving the accuracy of agent model (Fidelity) in the design of multi-level complex systems is very limited. Around this problem, this paper studies the uncertainty quantification of multi-level system agent model and the sequence sampling method for multi-level system agent model. The specific research contents and main innovations are as follows: (1) in the multi-level complex system, the uncertainty of the agent model of each layer subsystem will be transferred from the bottom layer to the top level response of the system. In order to analyze the influence of the uncertainty of the agent model of each layer subsystem in the multi-level complex system on the top-level response of the system, a quantitative method of uncertainty of the multi-level system agent model is proposed in this paper. The analytical expression of the uncertainty of each subsystem agent model to the top level response uncertainty of the system is derived. (2) in order to reduce the computational complexity and improve the computational efficiency in the process of uncertainty quantification of the multi-level system agent model, In this paper, the idea of using numerical integration to calculate the uncertainty transfer problem of agency model is put forward, and several commonly used numerical integration methods are compared from two aspects of calculation efficiency and calculation accuracy. Finally, the Gao Si-Hermitian integral method is selected and applied to the calculation of uncertainty transfer of multi-level system agent model. (3) most of the existing sequence sampling methods only consider the uncertainty of single-layer agent model. And the strategy of improving accuracy. However, this method ignores the uncertainty transfer problem between the agent models of each layer subsystem in the multi-level system, and the selected sampling points often can not improve the accuracy of the multi-level system agent model to the greatest extent. Based on this situation, a new sequential sampling method for multi-level system agent model is proposed in this paper. This method takes into account the uncertainty of each agent model, selects the position which has the greatest influence on the uncertainty of the whole system to collect new sample points, and then updates the agent model of each layer of the system. Until the accuracy of the proxy model of the whole system meets the predetermined requirements. Compared with the conventional sampling scheme, it is found that the method proposed in this paper is more reasonable for the allocation of new sample points and can improve the accuracy of the system agent model to the greatest extent when the new sample points are limited.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TB472

【共引文献】

相关期刊论文 前10条

1 裴进明;陈晓辉;;多精度仿真方法及其在天线优化设计中的应用[J];电波科学学报;2013年06期

2 陈晓辉;裴进明;郭欣欣;齐松;;一种基于多维均匀采样与Kriging模型的天线快速优化方法[J];电子与信息学报;2014年12期

3 武泽平;王东辉;杨希祥;江振宇;张为华;;应用径向基代理模型实现序列自适应再采样优化策略[J];国防科技大学学报;2014年06期

4 杨易;刘政;谷正气;黄剑锋;蔡圣康;;MIRA阶梯背模型尾部非光滑表面优化设计方法[J];重庆大学学报;2015年04期

5 吴宗谕;罗文彩;陈小前;陈勇;;序贯径向基模型在气动热分析中的应用[J];工程热物理学报;2015年08期

6 邓海强;余雄庆;;亚声速翼身融合无人机概念外形参数优化[J];航空学报;2014年05期

7 曹学群;罗娜;叶贞成;;基于Kriging代理模型的苯乙烯流程优化[J];华东理工大学学报(自然科学版);2014年03期

8 赵留平;詹大为;程远胜;刘均;;船舶结构优化设计技术研究进展[J];中国舰船研究;2014年04期

9 HU ChangLi;WANG GuoYu;CHEN GuangHao;HUANG Biao;;A modified PANS model for computations of unsteady turbulence cavitating flows[J];Science China(Physics,Mechanics & Astronomy);2014年10期

10 徐含乐;祝小平;周洲;任武;;基于左手材料的翼面隐身结构设计及优化[J];航空学报;2014年12期

相关会议论文 前1条

1 徐娟;李兆龙;陈如山;;超宽带微带天线优化的空间映射算法研究[A];2015年全国微波毫米波会议论文集[C];2015年

相关博士学位论文 前10条

1 俞国华;水平轴风力机叶片失速问题研究[D];上海交通大学;2013年

2 王博;基于CFD方法的先进旋翼气动特性数值模拟及优化研究[D];南京航空航天大学;2012年

3 黄雪飞;Mg-Sn-Mn及Mg-Cu-Mn合金的性能优化和显微结构[D];清华大学;2013年

4 宋昕;汽车气动升力及其对直线行驶能力影响的研究[D];湖南大学;2012年

5 甘衍军;复杂地球物理过程模型的敏感性分析方法与应用研究[D];北京师范大学;2014年

6 MARY OPOKUA ANSONG;基于复杂系统模型的地下采矿无线传感器网络中的优化混合神经网络[D];江苏大学;2014年

7 郑君;基于变可信度近似的设计优化关键技术研究[D];华中科技大学;2014年

8 彭磊;桁架式静止轨道卫星平台多学科多任务设计优化[D];北京理工大学;2015年

9 胡常莉;绕回转体空化流动特性与机理研究[D];北京理工大学;2015年

10 赵轲;基于CFD的复杂气动优化与稳健设计方法研究[D];西北工业大学;2015年

相关硕士学位论文 前10条

1 于海滨;陶瓷刀具材料三维微观裂纹扩展行为模拟研究[D];山东大学;2013年

2 张茶花;风力机叶片气动性能分析及优化设计[D];华北电力大学;2013年

3 李鹏飞;随机性优化算法性能定量对比评价方法与应用[D];中国工程物理研究院;2013年

4 刘云刚;基于刚度和耐撞性的车门结构轻量化设计研究[D];华南理工大学;2013年

5 文艺;基于响应面法的拉延工艺参数优化设计[D];华中科技大学;2013年

6 胡彭俊;HD-2汽车模型风洞试验数据影响因素分析及其优化[D];湖南大学;2013年

7 刘鹏辉;基于径向基函数的地铁车辆动力学计算仿真[D];北京交通大学;2014年

8 聂云;车尾造型对凹坑型非光滑车身气动减阻的影响与优化[D];湖南大学;2014年

9 李哲;基于代理模型法和差分进化算法的天线优化设计[D];西安电子科技大学;2014年

10 李光昱;基于多项式插值代理模型的飞行器MDO技术研究[D];国防科学技术大学;2012年



本文编号:2480408

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2480408.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户22f83***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com