当前位置:主页 > 管理论文 > 工程管理论文 >

阻尼环-转子-齿轮传动系统弯扭耦合振动研究

发布时间:2019-06-24 11:00
【摘要】:齿轮传动作为一种实用的传动系统,被普遍应用于各类机械传动系统中,如航空发动机的附件传动系统、汽车动力系统中有偏置距(即准双曲面齿轮)传动、直升机传动系统等。由于齿轮传动系统通常运作在比较恶劣的工作环境中,导致其容易受到振动和冲击等载荷的影响。因此,对齿轮传动系统进行减振研究一直是国内外学者关注的热点之一。阻尼环减振降噪技术是改善齿轮振动性能的一个非常有效的措施。它具有结构紧凑、工艺简单等特点,在工程中应用广泛。但是,现有关于阻尼环的研究大多是基于经验公式和实验来进行的,这样无疑会增加生产周期和研究成本。因此,对阻尼环-齿轮传动系统进行深入的理论分析显得尤为重要。结合动力减振器的工作原理,基于集中参数法,建立了考虑传动误差和Stribeck摩擦力模型的2自由度阻尼环-齿轮传动系统的动力学模型。采用谐波平衡法对动力学方程组进行求解,得到了系统的近似解析解,并与采用4阶Runge-Kutta法所得的数值解进行了对比,验证了解析解的有效性。应用数值结果给出了系统的幅频响应,对比了Stribeck摩擦力模型和Coulomb摩擦力模型在该系统中的优劣。结果表明,加装阻尼环不仅可以降低系统的共振响应幅值,而且对系统的固有频率仅有微小的影响;采用Stribeck摩擦力模型和Coulomb摩擦力模型建模都能得到非常接近的结果,但是这个差距会随着摩擦力的增大逐渐增大。因此,考虑到摩擦热效应,建模时应尽可能考虑使用Stribeck摩擦力模型。但是,使用Coulomb摩擦力模型建模也能得到非常接近的结果。以航空发动机转子实验台为实际研究对象,基于集中参数法建立了8自由度的转子-齿轮传动系统弯扭耦合动力学模型。根据系统的动力学方程,求得了系统的固有频率和主振型,并与通过ANSYS计算得到的系统固有特性进行了对比,验证了本章参数化建模方法的有效性。然后,分析了啮合刚度对系统固有特性的影响,并采用4阶Runge-Kutta法对系统的动力学方程进行了求解,得到了系统部分自由度在共振时的稳态响应。通过在8自由度转子-齿轮传动系统模型的主/从动齿轮上分别安装一个阻尼环的方式,得到了10自由度的安装阻尼环的转子-齿轮传动系统弯扭耦合动力学模型。采用4阶Runge-Kutta法对该系统进行求解,得到了系统各自由度在共振时的幅频响应,并以部分自由度为例进行了分析。然后,以阻尼环的安装刚度、安装阻尼、摩擦力为变量,分析了这些结构参数的变化对系统动力学特性的影响。结果表明,阻尼环的结构参数对系统的低阶共振几乎没有影响,而对高阶共振有比较明显的影响;增大阻尼环的三个结构参数值,在一定范围内有利于系统部分自由度的减振,包括转子的弯曲振动和齿轮的扭转振动。同时,这三个参数的变化,可能会导致系统某些自由度共振点数目的变化;安装刚度和安装阻尼都存在最佳值,使得系统的减振效果最佳。
[Abstract]:As a practical transmission system, gear transmission is widely used in various mechanical transmission systems, such as the accessory drive system of the aero-engine, the offset distance (i.e. hypoid gear) transmission in the automobile power system, the helicopter transmission system, and the like. As the gear drive system is normally operating in a relatively harsh operating environment, it is susceptible to loads such as vibration and shock. Therefore, the research on the vibration reduction of the gear transmission system has been one of the hot spots of the domestic and foreign scholars. The damping ring vibration reduction and noise reduction technology is a very effective measure to improve the vibration performance of the gear. The invention has the characteristics of compact structure, simple process and the like, and has wide application in the engineering. However, the existing research on the damping ring is mostly based on the empirical formula and the experiment, which will undoubtedly increase the production cycle and the research cost. Therefore, it is very important to carry out in-depth theoretical analysis of the damping ring-gear transmission system. In this paper, the dynamic model of a two-degree-of-freedom damping ring-gear transmission system, which takes into account the transmission error and the Sribbeck friction model, is established based on the working principle of the power shock absorber. The solution of the dynamic equations is solved by the harmonic balance method, the approximate analytical solution of the system is obtained, and the numerical solution obtained by the four-order Runge-Kutta method is compared, and the validity of the analytical solution is verified. The amplitude-frequency response of the system is given by the numerical results, and the advantages and disadvantages of the Sribbeck friction model and the Coulomb friction model in the system are compared. The results show that the addition of the damping ring can not only reduce the resonance response amplitude of the system, but also have only a slight effect on the natural frequency of the system. But this gap will gradually increase as the friction force increases. Therefore, taking into account the thermal effect of the friction, the use of the Stribeck friction model should be considered as much as possible in modeling. However, that use of the Coulomb friction model can also result in very close results. In this paper, an 8-degree-of-freedom rotor-gear transmission system bending and torsion coupling dynamic model is established based on the lumped parameter method. According to the dynamic equation of the system, the natural frequency and the main vibration mode of the system are obtained, and compared with the inherent characteristics of the system obtained by the ANSYS calculation, the validity of the parametric modeling method in this chapter is verified. Then, the influence of the meshing stiffness on the inherent characteristics of the system is analyzed, and the dynamic equation of the system is solved by the step Runge-Kutta method, and the steady-state response of the partial degree of freedom of the system in the resonance is obtained. By installing a damping ring on the main/ driven gear of the 8-degree-of-freedom rotor-gear transmission system model, the dynamic model of a 10-degree-of-freedom rotor-gear transmission system is obtained. The four-order Runge-Kutta method is used to solve the system, and the amplitude-frequency response of each degree of freedom of the system in resonance is obtained, and some degree of freedom is taken as an example. Then, the influence of the change of these structural parameters on the dynamic characteristics of the system is analyzed. The results show that the structure parameters of the damping ring have little influence on the low-order resonance of the system, and the higher-order resonance is obviously affected; the three structural parameter values of the damping ring are increased, and the damping of the partial degree of freedom of the system is facilitated in a certain range, Includes the bending vibration of the rotor and the torsional vibration of the gear. At the same time, the change of these three parameters can lead to the change of some degree of freedom of resonance points of the system, and the installation stiffness and the installation damping have the best value, so that the damping effect of the system is the best.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TB535

【相似文献】

相关期刊论文 前10条

1 张婷;李育锡;王三民;;功率二分支齿轮传动系统静态均载特性研究[J];机械传动;2012年03期

2 于东洋;张超;叶盛鉴;李威;郑浩;;齿轮传动系统温度预测方法研究[J];机械传动;2013年06期

3 徐毓娴;白立芬;于水;李庆祥;;齿轮传动系统精度测试[J];实验技术与管理;1997年01期

4 周美立,齐从谦,吴天星;齿轮传动系统的相似分析与设计[J];机械传动;1997年02期

5 诸伟新;齿轮传动系统的振动分析[J];河北职工大学学报;2000年01期

6 陆一平,查建中,Tony C Woo;平行轴齿轮传动系统布局设计的膨胀方法[J];机械工程学报;2001年12期

7 李润方,韩西,林腾蛟,陶泽光;齿轮传动系统结合部动力学参数识别[J];中国机械工程;2001年12期

8 潘宏侠,姚竹亭;齿轮传动系统状态检测与故障诊断[J];华北工学院学报;2001年04期

9 孙智民,沈允文,王三民,李华;星型齿轮传动系统的非线性动力学分析[J];西北工业大学学报;2002年02期

10 陈威,迟宝山;工程机械齿轮传动系统噪声分析与控制[J];现代制造工程;2004年01期

相关会议论文 前3条

1 王庆洋;曹登庆;;齿轮传动系统的减振降噪研究[A];第九届全国动力学与控制学术会议会议手册[C];2012年

2 李朝峰;周世华;刘杰;闻邦椿;;考虑齿侧间隙的齿轮传动系统非线性动力学特性研究[A];第11届全国转子动力学学术讨论会(ROTDYN2014)论文集(上册)[C];2014年

3 王静;李明;刘刚;;滚动轴承-锥齿轮传动系统非线性动力学研究[A];中国力学大会——2013论文摘要集[C];2013年

相关博士学位论文 前8条

1 鲍和云;两级星型齿轮传动系统分流特性及动力学研究[D];南京航空航天大学;2006年

2 陈会涛;风力发电机齿轮传动系统随机振动分析及动力可靠性概率优化设计[D];重庆大学;2012年

3 周雁冰;基于高阶统计量的齿轮传动系统故障特征提取方法研究[D];华北电力大学;2013年

4 齐立群;空间齿轮传动系统接触动力学及相关问题研究[D];哈尔滨工业大学;2012年

5 朱增宝;封闭差动人字齿轮传动系统均载及动力学特性分析研究[D];南京航空航天大学;2013年

6 龙泉;风电机组齿轮传动系统动态特性及故障诊断方法研究[D];华北电力大学;2012年

7 张锋;基于压电作动器的齿轮传动系统振动主动控制及算法研究[D];重庆大学;2013年

8 韩振南;齿轮传动系统的故障诊断方法的研究[D];太原理工大学;2003年

相关硕士学位论文 前10条

1 王兆龙;齿轮传动系统的非光滑分岔行为研究[D];燕山大学;2015年

2 李枫;高速动车组转向架齿轮传动系统的仿真分析与试验研究[D];上海交通大学;2015年

3 柴立发;开沟作业机组组合传动条统设计及机理分析[D];河北农业大学;2015年

4 张凯;直齿轮传动系统弹性误差运动模型及精度分析[D];大连理工大学;2015年

5 姬娟;基于多参数仿真分析的二级齿轮传动系统的动力学研究[D];兰州交通大学;2015年

6 陶朝林;齿轮传动系统的动态特性及参数合理匹配研究[D];兰州交通大学;2015年

7 李自强;基于非线性自适应滤波算法的齿轮传动系统振动主动控制研究[D];重庆大学;2015年

8 梁亦栋;仿形秸秆粉碎还田机设计研究[D];山东理工大学;2015年

9 罗鑫鑫;轨道车车轴齿轮传动系统动态特性研究与分析[D];湘潭大学;2015年

10 宋茂华;乘坐式高速插秧机后桥机构的研究与设计[D];山东理工大学;2015年



本文编号:2505008

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2505008.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4cb6f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com