二氧化碳捕集吸附塔性能的多尺度建模研究
发布时间:2021-03-29 09:56
从烟道气中去除二氧化碳是解决气候变化问题的重要措施之一。当前,基于该项技术的工业净化系统报道很少,也鲜有研究者对此进行专业化的研究。为此,吸附作为一种正在发展且相当重要的技术,对其进行深入的研究也迫在眉睫。目前,己经开发了多尺度模型来模拟固定床吸附塔中气体混合物(CO2 and H2)的动力学和流体动力学。本文应用了变压吸附(PSA)和温变吸附(TSA)两种吸附技术,确定了理想的操作条件,对吸附反应进行了不同变量的考察,并将模拟结果与实验数据进行了比较。PSA由于易于操作,可靠性和可重复性,通常其性能优于TSA操作。本文开发出一维多尺度模型,通过求解偏微分方程(PDE)来生成吸附CO2/H2的突破曲线,其中的偏微分方程包括守恒方程,状态方程模型等,使用Comsol Multiphysics软件,模拟并分析吸附剂小球在中孔和微孔中的传质过程。在不同的操作条件下,本文开发的模型可以很好地匹配文献实验数据。选择CO2和H2的混合物作为吸附物,选择UiO-67/MCM-41 MOF混合物作为吸附剂。为了模拟CO2和H2的穿透曲线,采用了线性吸附力模型(LDF),该数学模型己用于预测不同条件下C...
【文章来源】:北京化工大学北京市 211工程院校 教育部直属院校
【文章页数】:92 页
【学位级别】:硕士
【文章目录】:
学位论文数据集
Abstract
摘要
CHAPTER 1 LITERATURE REVIEW
1.1 Introduction and literature review
1.2 Evidence and consequences of global warming
1.3 Long term effects
1.4 Management
2 Capture"> 1.5 CO2 Capture
2 capture"> 1.6 Method of CO2 capture
1.7 Adsorption
1.7.1 History
1.8 Types of adsorption isotherms
1.9 Adsorbent for gas separation
1.9.1 Zeolites
1.9.2 Activated carbon
1.9.3 Metal organic frameworks (MOFs)
1.10 Mass transfer resistance
1.10.1 Macro-pore diffusional resistance
1.10.2 Meso and micro-pore diffusional resistance
1.11 Literature on CFD simulation of multiscale fixed bed adsorption
1.12 Introduction to COMSOL multiphysics
1.13 Thesis structure
CHAPTER 2 MODELING AND SIMULATION METHODOLOGY
2.1 Description of model
2.2 Processes of numerical simulations
2.2.1 Pre-processing
2.2.2 Processing
2.2.3 Post processing
2.3 Mathematical modeling
2.3.1 Governing equations
2.3.2 Shape
2.4 Mass balance equations
2.4.1 Mass transfer correlation
2.4.2 Initial & boundary conditions for mass transfer equations
2.5 Heat transfer
2.5.1 Initial & boundary conditions for heat transfer equations
2.6 Isotherms
2.7 Predictive correlations for model parameters
2.8 Pressure drop
2.9 Equation of state
2.10 Porosities
2.11 Numerical setup of model
2.12 Model validation
2.12.1 Validation of breakthrough curve for single component model:
2.12.2 Validation of breakthrough curve for binary mixtures model:
CHAPTER 3 MASS TRANSFER PROFILES STUDY AT MULTISCALE LEVELSFOR CO2 ADSORPTION USING DIFFERENT CAPTURE MATERIALS
3.1 Introduction
3.2 Pressure swing adsorption
3.3 Selected case
3.4 Results and discussion
2 concentration factor"> 3.5 Effect of velocity on bed CO2 concentration factor
3.6 Temperature swing adsorption (TSA)
3.7 Adsorption step
3.8 Effect of bed height
3.9 Effect of CO2 concentration on temperature
2/H2 MIXTURES AND PARAMETRIC STUDY ON BREAKTHROUGH">CHAPTER 4 A LINEAR DRIVING FORCE APPROXIMATION FOR ADSORPTIONOF CO2/H2 MIXTURES AND PARAMETRIC STUDY ON BREAKTHROUGH
4.1 Introduction
4.2 Material and adsorption isotherms
4.2.1 Material characteristics
4.2.2 Adsorption isotherms
4.2.3 Binary adsorption on UIO-67/MCM-41
4.3 Linear driving force (LDF) approximation
4.3.1 Introduction
4.4 Results and discussion
4.4.1 Comparison between LDF approximation and breakthrough experiment
4.5 Reference breakthrough experiment
4.6 Parameter estimation
4.7 Breakthrough and temperature profiles
4.8 Effect of temperature, pressure and composition
4.9 Parametric study of bed porosity, feed velocity and particle size on breakthrough
4.9.1 Effect of bed porosity
4.9.2 Effect of particle size
4.9.3 Effect of feed velocity
4.10 Hydrogen recovery
Chapter 5 Conclusion
REFERENCES
ACKNOWLEDGEMENT
INTRODUCTION TO SUPERVISOR
INTRODUCTION TO AUTHOR
附件
本文编号:3107367
【文章来源】:北京化工大学北京市 211工程院校 教育部直属院校
【文章页数】:92 页
【学位级别】:硕士
【文章目录】:
学位论文数据集
Abstract
摘要
CHAPTER 1 LITERATURE REVIEW
1.1 Introduction and literature review
1.2 Evidence and consequences of global warming
1.3 Long term effects
1.4 Management
2 Capture"> 1.5 CO2 Capture
2 capture"> 1.6 Method of CO2 capture
1.7 Adsorption
1.7.1 History
1.8 Types of adsorption isotherms
1.9 Adsorbent for gas separation
1.9.1 Zeolites
1.9.2 Activated carbon
1.9.3 Metal organic frameworks (MOFs)
1.10 Mass transfer resistance
1.10.1 Macro-pore diffusional resistance
1.10.2 Meso and micro-pore diffusional resistance
1.11 Literature on CFD simulation of multiscale fixed bed adsorption
1.12 Introduction to COMSOL multiphysics
1.13 Thesis structure
CHAPTER 2 MODELING AND SIMULATION METHODOLOGY
2.1 Description of model
2.2 Processes of numerical simulations
2.2.1 Pre-processing
2.2.2 Processing
2.2.3 Post processing
2.3 Mathematical modeling
2.3.1 Governing equations
2.3.2 Shape
2.4 Mass balance equations
2.4.1 Mass transfer correlation
2.4.2 Initial & boundary conditions for mass transfer equations
2.5 Heat transfer
2.5.1 Initial & boundary conditions for heat transfer equations
2.6 Isotherms
2.7 Predictive correlations for model parameters
2.8 Pressure drop
2.9 Equation of state
2.10 Porosities
2.11 Numerical setup of model
2.12 Model validation
2.12.1 Validation of breakthrough curve for single component model:
2.12.2 Validation of breakthrough curve for binary mixtures model:
CHAPTER 3 MASS TRANSFER PROFILES STUDY AT MULTISCALE LEVELSFOR CO2 ADSORPTION USING DIFFERENT CAPTURE MATERIALS
3.1 Introduction
3.2 Pressure swing adsorption
3.3 Selected case
3.4 Results and discussion
2 concentration factor"> 3.5 Effect of velocity on bed CO2 concentration factor
3.6 Temperature swing adsorption (TSA)
3.7 Adsorption step
3.8 Effect of bed height
3.9 Effect of CO2 concentration on temperature
2/H2 MIXTURES AND PARAMETRIC STUDY ON BREAKTHROUGH">CHAPTER 4 A LINEAR DRIVING FORCE APPROXIMATION FOR ADSORPTIONOF CO2/H2 MIXTURES AND PARAMETRIC STUDY ON BREAKTHROUGH
4.1 Introduction
4.2 Material and adsorption isotherms
4.2.1 Material characteristics
4.2.2 Adsorption isotherms
4.2.3 Binary adsorption on UIO-67/MCM-41
4.3 Linear driving force (LDF) approximation
4.3.1 Introduction
4.4 Results and discussion
4.4.1 Comparison between LDF approximation and breakthrough experiment
4.5 Reference breakthrough experiment
4.6 Parameter estimation
4.7 Breakthrough and temperature profiles
4.8 Effect of temperature, pressure and composition
4.9 Parametric study of bed porosity, feed velocity and particle size on breakthrough
4.9.1 Effect of bed porosity
4.9.2 Effect of particle size
4.9.3 Effect of feed velocity
4.10 Hydrogen recovery
Chapter 5 Conclusion
REFERENCES
ACKNOWLEDGEMENT
INTRODUCTION TO SUPERVISOR
INTRODUCTION TO AUTHOR
附件
本文编号:3107367
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/3107367.html