供应链网络均衡模型和算法研究
发布时间:2018-02-26 05:05
本文关键词: 供应链网络均衡 承诺交货期 变分不等式 Lemke算法 投影压缩算法 交替方向法 出处:《湖南大学》2014年硕士论文 论文类型:学位论文
【摘要】:供应链是一个典型的动态系统,如何协调系统中各成员间的利益关系,寻找供应链网络的最终均衡状态,是供应链管理中的一个重要问题.本文先是构建了两个供应链网络均衡模型:考虑承诺交货期供应链网络均衡模型和多期网购供应链网络均衡模型.然后给出了其求解算法,,并通过数值算例证实了算法的计算效率和可操作性,同时也研究了个别因素的变化对供应链的影响. 本文主要研究成果如下: 1.本文考虑到随着市场竞争的日益激烈,现代企业越来越重视速度问题,构建了考虑承诺交货期供应链网络均衡模型,分析了网络均衡解的存在唯一性,同时利用数值实验说明了制造商产品单位生产时间以及生产成本的变化对供应链的影响.传统的供应链求解方法为投影压缩算法,在这里我们用Lemke算法求解该供应链模型,这种精度高的算法可以减少计算误差.我们利用数值算例证实了Lemke算法的计算效率优于投影压缩算法.最后给出数值算例分析该模型均衡状态,计算出均衡交易量、产量和均衡价格,这对于供应链上的企业决定销售价格和生产规模等具有一定的现实指导意义. 2.我们考虑到供应链是典型的动态系统,链上各成员之间的供求关系会随时间而改变,同时考虑到我国电子商务的高速发展,建立了多期网购供应链网络均衡模型.对模型解的存在性进行分析之后,考虑到多期网购供应链网络均衡模型均衡解满足的变分不等式带有线性等式约束,这里我们采用交替方向法进行求解,数值实现效果很好,同时对交替方向法及其收敛性进行了详细的说明分析,并通过数值算例证实了交替方向法优于由Solodov和Svaite提出的超平面投影算法(S-S算法).最后结合算例,讨论了直销以及运输成本的变化对供应链网络均衡的影响,这对于供应链上的企业具有一定的实际意义. 本文从模型和算法两个方面对供应链网络均衡问题做了详细的研究,具有现实经济价值.
[Abstract]:Supply chain is a typical dynamic system. How to coordinate the interests of each member in the system and find the final equilibrium state of the supply chain network. It is an important problem in supply chain management. Firstly, two supply chain network equilibrium models are constructed in this paper: supply chain network equilibrium model with commitment due time and supply chain network equilibrium model with multi-period online purchase. The computational efficiency and maneuverability of the algorithm are verified by numerical examples. At the same time, the influence of individual factors on supply chain is also studied. The main research results of this paper are as follows:. 1. In view of the increasing competition in the market, modern enterprises pay more and more attention to the problem of speed, construct the supply chain network equilibrium model considering the commitment due date, and analyze the existence and uniqueness of the network equilibrium solution. At the same time, numerical experiments are used to illustrate the influence of the manufacturer's production time and production cost on the supply chain. The traditional solution of the supply chain is the projection compression algorithm. Here, we use Lemke algorithm to solve the supply chain model. This algorithm with high accuracy can reduce the calculation error. We use numerical examples to prove that the computational efficiency of Lemke algorithm is better than that of projection compression algorithm. Finally, a numerical example is given to analyze the equilibrium state of the model and to calculate the equilibrium trading volume. The output and equilibrium price have certain practical significance for enterprises in supply chain to decide the sales price and production scale. 2. We take into account that the supply chain is a typical dynamic system and that the supply and demand relationships between the members of the chain will change over time, taking into account the rapid development of e-commerce in our country. Based on the analysis of the existence of the solution of the model, the variational inequality of the equilibrium solution of the multi-period online shopping supply chain network model is considered to be constrained by linear equality. In this paper, the alternating direction method is used to solve the problem, and the numerical results are very good. At the same time, the alternating direction method and its convergence are explained and analyzed in detail. Numerical examples show that the alternating direction method is superior to the hyperplane projection algorithm proposed by Solodov and Svaite. Finally, the influence of direct selling and transportation cost on the equilibrium of supply chain network is discussed. This is of practical significance to the enterprises in the supply chain. In this paper, the supply chain network equilibrium problem is studied in detail from two aspects of model and algorithm, which is of practical economic value.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP301.6;F274
【参考文献】
相关期刊论文 前9条
1 滕春贤;高广振;;不确定的多商品流多准则供应链网络模型[J];系统工程;2009年01期
2 孙德锋;求解变分不等式和互补问题的一种迭代法[J];高等学校计算数学学报;1994年02期
3 周瑾;交替方向法求解带线性约束的变分不等式[J];高等学校计算数学学报;1999年02期
4 朱道立;胡一z
本文编号:1536607
本文链接:https://www.wllwen.com/guanlilunwen/gongyinglianguanli/1536607.html