考虑共同配送和能耗的车辆路径问题优化研究
[Abstract]:Joint distribution is one of the important trends in the development of distribution. Its value lies in reducing logistics cost and improving logistics efficiency through cooperation, resource sharing, and at the same time reducing the running vehicles on the way, relieving the pressure of urban traffic and saving social resources. Reduce environmental pollution. Because of its important value, joint distribution has been widely used in developed countries (such as Germany, Japan). In China, joint distribution is still in its infancy, with the development of market economy. The maturation of logistics environment and the continuous pressure of logistics cost and traffic congestion will promote the rapid development of joint distribution in China. However, in the actual operation of joint distribution enterprises, there are some problems to be solved. For example, how to integrate the existing distribution resources, how to reduce the energy consumption of distribution vehicles, and how to play a greater benefit? This paper first analyzes the operation mode of joint distribution, and through the analysis of the existing model, it is concluded that the integration of common distribution resources is mainly reflected in three aspects: customer resources, distribution vehicle resources and distribution point resources. On this basis, several common distribution strategies are established. Secondly, according to the situation of customer resource sharing, considering the process of regional economic integration, supply enterprises or retail chain enterprises in the supply chain, when their companies develop to a certain scale, There are many distribution centers to implement joint distribution to meet the needs of different customers, and smaller and more batches of distribution needs, need to consider the situation based on customer differences to integrate customer resources, Improve delivery efficiency and service level. In this paper, a multi-point vehicle routing model under the condition of customer grouping is constructed. With the shortest distribution distance as the optimization goal, the algorithm is designed on the basis of genetic algorithm, and the number of customers in distribution center is changed by inserting variation. The improved algorithm is compared with the traditional algorithm in the running results, and the optimization process under different populations is further analyzed. Thirdly, according to the situation of distribution vehicle sharing, considering the variability of customer demand in actual distribution operation, the distribution vehicle does not need to return to the departure yard after completing the distribution service of the last customer point in each stage. According to the principle of reducing the cost of resource sharing, the vehicle can be parked in the open cooperative enterprise yard. Each distribution stage is independent, with the change of customer demand, the distribution vehicle of the distribution yard adjusts the number of vehicles with the changing distribution demand. In this paper, the vehicle routing model of multi-distribution points under the condition of open vehicle yard is constructed. With the shortest distribution distance as the optimization goal, the algorithm is designed on the basis of particle swarm optimization algorithm, and the search breadth of the algorithm is improved by designing the particle update. To avoid falling into local optimum, the improved algorithm is compared with the traditional particle swarm optimization algorithm. Finally, the paper discusses the energy consumption analysis of distribution vehicles under different conditions, such as the variation of distribution distance, the constraint of distribution time, and the actual distribution speed and the speed limit of urban vehicles, and carries out simulation tests. This paper provides a reference for the choice of energy saving and low carbon distribution vehicle driving mode under different conditions such as distance, time, speed and so on.
【学位授予单位】:西南交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:F252
【参考文献】
相关期刊论文 前10条
1 宋国华;;道路交通油耗与排放的微观测算模型综述[J];交通节能与环保;2010年01期
2 张涛,王梦光;遗传算法和3-opt结合求解带有能力约束的VRP[J];东北大学学报;1999年03期
3 张军;唐加福;潘震东;;求解多车场车辆路径问题的分散搜索算法[J];系统工程;2009年06期
4 林岩,胡祥培,王旭茵;物流系统优化中的定位——运输路线安排问题(LRP)研究评述[J];管理工程学报;2004年04期
5 刘云忠,宣慧玉;车辆路径问题的模型及算法研究综述[J];管理工程学报;2005年01期
6 霍红;贺克斌;王歧东;;机动车污染排放模型研究综述[J];环境污染与防治;2006年07期
7 王征;王建军;杨文超;;顾客时间窗变化的多车场车辆调度干扰管理模型研究[J];管理科学;2010年03期
8 汪寿阳,赵秋红,夏国平;集成物流管理系统中定位—运输路线安排问题的研究[J];管理科学学报;2000年02期
9 潘震东;唐加福;韩毅;;带货物权重的车辆路径问题及遗传算法[J];管理科学学报;2007年03期
10 邹彤,李宁,孙德宝,李菁;多车场车辆路径问题的遗传算法[J];计算机工程与应用;2004年21期
相关博士学位论文 前10条
1 彭北青;第三方物流配送车辆路径问题模型及算法研究[D];华中科技大学;2009年
2 刘冉;面向协同运输的车辆路径问题优化算法研究[D];上海交通大学;2011年
3 王君;不确定因素下车辆路径问题建模及优化方法研究[D];天津大学;2012年
4 谢秉磊;随机车辆路径问题研究[D];西南交通大学;2003年
5 符卓;开放式车辆路径问题及其应用研究[D];中南大学;2003年
6 张建勇;模糊信息条件下车辆路径问题研究[D];西南交通大学;2004年
7 张杨;不确定环境下城市交通中车辆路径选择研究[D];西南交通大学;2006年
8 刘兴;基于协作的车辆路径问题研究[D];天津大学;2006年
9 姜昌华;遗传算法在物流系统优化中的应用研究[D];华东师范大学;2007年
10 王征;车辆路径问题的知识表示及智能建模方法研究[D];大连理工大学;2007年
相关硕士学位论文 前10条
1 张俊;多车场带时间窗车辆路径问题的模型和算法[D];大连理工大学;2010年
2 张文静;协同粒子群算法及其在多车场路径优化问题中的应用[D];华东师范大学;2011年
3 蔡景稳;遗传算法在多车场车辆路径问题中的应用研究[D];浙江师范大学;2011年
4 李宁;基于绿色物流思想的配送问题研究[D];大连海事大学;2004年
5 傅忠宁;物流共同配送模式与实施对策研究[D];吉林大学;2005年
6 孙爽;供应链中零售商采购与促销的投资协调问题研究[D];东北大学;2005年
7 杨元峰;基于模拟退火遗传算法的多车场车辆调度问题的研究与应用[D];苏州大学;2006年
8 陈冬;基于粒子群优化算法的无人机航迹规划[D];西北工业大学;2007年
9 史玉敏;物流配送环节中车辆路径问题(VRP)的研究[D];山东师范大学;2007年
10 邓欣;基于遗传算法的多车场车辆路径问题研究[D];重庆大学;2007年
,本文编号:2202403
本文链接:https://www.wllwen.com/guanlilunwen/gongyinglianguanli/2202403.html