基于微博大数据的游客情感与空气质量关系研究——以西安市为例
发布时间:2018-01-01 01:21
本文关键词:基于微博大数据的游客情感与空气质量关系研究——以西安市为例 出处:《陕西师范大学学报(自然科学版)》2016年04期 论文类型:期刊论文
【摘要】:利用西安市国内游客发布的微博数据,采用修正的"微博情感倾向算法验证程序"(MBEWC)计算游客的情感倾向值,对情感倾向和空气质量进行相关分析,研究情感倾向和空气质量的相互关系。研究发现:PM_(2.5)、PM_(10)、NO_2、SO_2、CO这5种污染物均与游客微博情感值呈现较弱的负相关;在所有污染物指标中,NO_2对游客情感的影响程度最大,具体表现为每多排放1 000μg NO_2,游客微博情感值下降21分;其次,在烟尘污染物PM_(2.5)和PM_(10)中,PM_(2.5)粒径很小,对游客情感的影响比PM_(10)严重;而对于气体污染物,NO_2和SO_2对游客情感的影响程度远大于CO。空气中多种污染物同时存在对游客情感的影响要明显大于某一污染物单独存在时的影响,具体表现为PM_(2.5)和SO_2同时存在对游客情感的影响程度大于SO_2单独存在对游客情感值的影响。
[Abstract]:Using Weibo data released by domestic tourists in Xi'an, the modified Weibo algorithm Verification Program is used to calculate the emotional tendency of tourists. The relationship between affective disposition and air quality was analyzed and the relationship between affective tendency and air quality was studied. All of the five pollutants were negatively correlated with the emotional value of Weibo. Among all the pollutant indexes, no2 has the greatest influence on tourists' emotion, which is shown as follows: 1 000 渭 g / kg No2 is discharged, and the emotional value of Weibo decreases by 21 points. Secondly, in the case of the smoky pollutants PMCs 2.5 and 10), the particle size is very small, and the impact on tourists' emotions is more serious than that on PM10); And for gas pollutants. The influence of NO_2 and SO_2 on tourists' emotion is much greater than that of CO.There are many pollutants in the air at the same time and the influence on tourists' emotion is obviously greater than that when a pollutant exists alone. The influence of SO_2 and SO_2 on tourists' emotion is greater than that of SO_2 alone.
【作者单位】: 陕西师范大学旅游与环境学院;
【基金】:国家自然科学基金(41571135;41401639) 旅游业青年专家培养计划(TYETP201344) 中央高校基本科研业务费专项资金(14SZZD02)
【分类号】:X51;F592.7
【正文快照】: 随着工业化、城市化进程的发展,人们的生活质量显著提高。与此同时,不断排放的污染物致使环境恶化,北京、上海、西安、石家庄、哈尔滨等城市的空气质量持续下降,就连海口等城市也出现了雾霾天气[1],空气中排放的PM2.5(细微颗粒物含量)、PM10(可吸入颗粒物含量)严重超标[2],这
【相似文献】
相关期刊论文 前10条
1 ;空气质量提醒器[J];林业劳动安全;2000年03期
2 田雷;空气质量周报你会看吗?[J];沿海环境;2000年04期
3 白木;中国城市空气质量恶化的趋势有所减缓[J];电网技术;2001年08期
4 ;空气质量预报[J];节能与环保;2001年03期
5 孔悦 ,齐求是;中国室内空气质量与健康论坛在天津举行[J];科技潮;2003年09期
6 江峰琴;空气质量预报的改进[J];环境监测管理与技术;2004年02期
7 吴q氏,
本文编号:1362320
本文链接:https://www.wllwen.com/guanlilunwen/lvyoujiudianguanlilunwen/1362320.html