基于案例推理的旅游目的地个性化推荐研究
[Abstract]:With the rapid development of economy and science and technology in our country, with the increasing progress of Internet technology and the gradual improvement of people's living standards, the demand for self-help travel which can meet personal interests and preferences is also increasing. Because the Internet is full of a lot of information, it is difficult for users to obtain the effective tourism information they need when they look up tourism-related information on the Internet. As a method to solve this problem, tourism recommendation system has become the focus of scholars' attention. How to recommend relevant tourism information to users to meet their personalized tourism needs has become the key point of tourism recommendation research. At present, the tourism recommendation system usually has the problems of cold start and sparse data, and the recommendation content is mainly tourism products, and some systems that recommend tourism destination for users also have a single recommended tourism destination consultation. A situation that is not rich enough. This paper focuses on the interest of users, constructs a case base based on travel notes, and constructs a personalized recommendation model of tourism destination based on case-based reasoning, which provides users with rich tourism destination information to meet their personalized needs. To a certain extent, the problems of sparse data and cold start are solved. The main research work of this paper is as follows: (1) the tourism destination model and case user preference model suitable for case-based reasoning are constructed. The basic case base is formed by obtaining the information of users and travel notes from the "polar cell" website, and the tourism preference degree of the case users is obtained by using the constructed user tourism preference algorithm. According to the user preference and the improved K-Means algorithm, the case users are classified according to the type of tourism destination, and the subcase base of various types of tourism destination is formed. In the retrieval of cases, only the tourism destination type subcase base of the type to be recommended is searched, so that the retrieval efficiency can be effectively improved. (2) the case attribute weight algorithm is constructed. The evaluation of tourism elements in the questionnaire and the algorithm of case attribute weight are used to determine the case attribute weight. (3) an improved trust algorithm is constructed. The trust degree is introduced into the personalized recommendation system of tourism destination based on case-based reasoning, and the case similarity algorithm with trust degree is constructed. Improve the accuracy of recommendation results. (4) the method of case-based reasoning is applied to the personalized recommendation system of tourism destination, and the related algorithms are constructed and represented by Mathematica software, and the examples are verified according to the user data. The recommendation of tourist destination and case travel notes has been preliminarily realized. Based on case-based reasoning technology, the combination of users' tourism interest and trust, this paper realizes the recommendation of personalized tourism destination and travel notes for tourists. It not only meets the personalized needs of users, but also provides users with rich tourism information. The effectiveness and accuracy of the recommendation algorithm are proved by example recommendation and empirical results. The research in this paper provides a certain reference value for personalized tourism destination recommendation system.
【学位授予单位】:海南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F592
【参考文献】
相关期刊论文 前10条
1 李霞;尹川东;袁云;;旅游路线个性化推荐算法比较分析[J];计算机技术与发展;2016年09期
2 方潇;刘晓寒;柴永平;周文曼;;一种基于协同过滤的旅游行程推荐算法[J];地理空间信息;2016年07期
3 文俊浩;何波;胡远鹏;;基于社交网络用户信任度的混合推荐算法研究[J];计算机科学;2016年01期
4 林树宽;柳帅;陈祖龙;乔建忠;;基于分类层次偏好树和用户间信任度的位置推荐方法[J];小型微型计算机系统;2015年08期
5 胡田;郭英之;;旅游消费者在线购买旅游产品的信任度、满意度及忠诚度研究[J];旅游科学;2014年06期
6 麻风梅;;基于游客综合兴趣度的旅游景点推荐[J];测绘与空间地理信息;2014年03期
7 吴珊燕;许鑫;;基于案例推理的菜谱推荐系统研究[J];现代图书情报技术;2013年12期
8 虞娟;;基于本体的CBR及其在旅游产品智能推荐系统的应用研究[J];哈尔滨师范大学自然科学学报;2013年06期
9 杨兴耀;于炯;吐尔根·依布拉音;廖彬;钱育蓉;;融合奇异性和扩散过程的协同过滤模型[J];软件学报;2013年08期
10 王明佳;韩景倜;韩松乔;;基于模糊聚类的协同过滤算法[J];计算机工程;2012年24期
相关博士学位论文 前1条
1 张贤坤;基于案例推理的应急决策方法研究[D];天津大学;2012年
相关硕士学位论文 前10条
1 李瀚晨;基于“用户—景点”关系建模的景点推荐技术的研究[D];北京工业大学;2016年
2 张恒;个性化混合推荐算法在旅游中的应用[D];华中师范大学;2016年
3 李远博;基于关联规则算法的旅游推荐研究[D];陕西师范大学;2015年
4 王建雨;旅游路由推荐技术的研究与实现[D];北京工业大学;2015年
5 胡乔楠;基于旅游文记的旅游景点推荐及行程路线规划系统[D];浙江大学;2015年
6 朱媛;基于领域专家度和信任度的电子健康服务个性化推荐方法研究与应用[D];浙江财经大学;2015年
7 朱全;基于加权关联规则挖掘的智慧旅游推荐系统的设计与实现[D];武汉科技大学;2014年
8 王强;基于协同过滤算法的电子商务推荐系统研究[D];太原理工大学;2013年
9 王桂芬;电子商务个性化推荐系统中协同过滤算法的研究与应用[D];南昌大学;2012年
10 吴春阳;数据挖掘在电子商务旅游线路推荐系统中的应用研究[D];重庆交通大学;2009年
,本文编号:2493320
本文链接:https://www.wllwen.com/guanlilunwen/lvyoujiudianguanlilunwen/2493320.html