当前位置:主页 > 管理论文 > 品牌论文 >

基于金属纳米复合材料修饰电极阵列的黄酒酒龄、品牌和地域鉴别

发布时间:2018-08-19 18:33
【摘要】:黄酒营养丰富,市场发展前景广阔,并享有"国酒"美誉,但因质量评价手段较少,导致诸如虚报酒龄、乱贴知名品牌标签和以次充好冒充地理标志产品等非法行为时常发生,严重侵犯了正规厂家利益和消费者权益。复合材料修饰电极因表面能够固定化学性质优良的纳米材料和聚合物等,克服了单一材料修饰电极和裸电极反应微弱、灵敏度低等缺点,近年来已在酒类酒龄、地域和品牌鉴别中有所应用。基于此,本文首次将自主研制的金属纳米复合材料修饰电极阵列用于黄酒质量真伪鉴别,结合模式识别方法成功实现了不同酒龄、品牌和地域黄酒的区分和预测,从而为净化黄酒市场、维护消费者和正规厂家的利益提供了一套全新可靠的解决方案。本文具体研究内容、方法和结论如下:(1)采用自制的PACBK/Au/GCE、PABSA/Au/GCE和PASP/Pt/GCE组成修饰玻碳电极阵列成功实现了对3年陈、5年陈、8年陈、10年陈、15年陈和20年陈6种酒龄绍兴古越龙山黄酒的区分和预测。本部分选取在黄酒陈酿过程中含量变化较大的三种呈味物质:维生素C(维生素,酸味)、酪氨酸(氨基酸,涩味)和葡萄糖(糖类,甜味),采用循环伏安法(CV)和电流时间法(i-t)等对应制备了 PACBK/Au/GCE、PABSA/Au/GCE和PASP/Pt/GCE三种聚合物/金属纳米复合材料修饰电极,并在优化pH、扫速和缓冲液浓度等检测条件下实现了对三种呈味物质在一系列浓度梯度溶液中的定量测定,通过对比三种物质在电极上的检测限和在黄酒中的含量,发现物质在黄酒中含量远大于检测限,这说明黄酒样品满足了修饰电极的检测条件,即证明了修饰电极鉴别黄酒的有效性。基于电极有效性的基础上,在6种酒龄黄酒样品中采用复频多电位阶跃法作为激发信号施加于电极阵列,选取响应电流信号曲线与时间轴所围区域的面积值作为特征值,结合主成分分析(PCA)、局部保留投影(LPP)、线性判别分析(LDA)和支持向量机(LSSVM、LIBSVM)等模式识别方法对黄酒酒龄进行区分和预测,PCA、LPP和LDA三种区分模型中,LDA区分效果最好,在二维图和三维图中,6种酒龄黄酒都能够明显分开;LSSVM和LIBSVM两种酒龄回归模型中,LIBSVM预测效果要优于LSSVM,特别是均方差更小。(2)采用自制的PACBK/Au/GCE、PABSA/Au/GCE和PGA/Cu/GCE组成修饰玻碳电极阵列成功实现了对3种古越龙山、3种塔牌和会稽山总计7种品牌绍兴黄酒的区分和预测。本部分选取在各品牌黄酒间含量差异相对较大的三种呈味物质:维生素C(维生素,酸味)、酪氨酸(氨基酸,涩味)和没食子酸(酚类,苦味),采用循环伏安法等电化学方法对应制备了 PACBK/Au/GCE、PABSA/Au/GCE和PGA/Cu/GCE三种聚合物/金属纳米复合材料修饰电极,在优化pH、扫速、富集电位和时间等检测条件下应用线性扫描伏安法(LSV)和差分脉冲伏安法(DPV)等实现了三种呈味物质在一系列浓度梯度中的定量测定,并将三种电极对维生素C、酪氨酸和没食子酸的检测限与三种呈味物质在黄酒中实际含量进行了比较,结果显示实际含量均远大于检测限,说明基于修饰电极阵列对黄酒品牌进行鉴定是可行的。之后在7种品牌黄酒中采用方波和梯形波两种多电位阶跃法施加于电极阵列得到响应电流信号曲线,选取电流曲线与时间轴所包围区域面积值作为特征值,结合PCA、LPP、LDA、LIBSVM、ELM(极限学习机)和BPNN(BP神经网络)等模式识别方法对黄酒品牌进行了区分和预测,区分模型显示PCA、LPP和LDA三种区分效果均存在3种塔牌黄酒类间距过小的问题,ELM区分效果也不太理想,但LIBSVM模型效果较佳,训练集和测试集区分正确率分别为100%和99.05%;预测模型显示ELM和LIBSVM预测效果一般,而BPNN效果较好,预测准确率达到了 97.14%。(3)采用自制的 SMWCNT/Au/GCE、PABSA/Au/GCE 和 PGA/Cu/GCE 组成修饰玻碳电极阵列成功实现了对江苏丹阳(镇江)、青岛即墨(青岛)、浙江汾湖(嘉兴)、浙江同康(台州)和古越龙山(绍兴)5种地域黄酒的区分和预测。本部分选取在各地域黄酒中比较有代表性的三种呈味物质:5'-GMP(添加剂,鲜味)、酪氨酸(氨基酸,涩味)和没食子酸(酚类,苦味),采用滴涂法和循环伏安法等制备了 SMWCNT/Au/GCE、PABSA/Au/GCE和PGA/Cu/GCE三种金属纳米复合材料修饰电极,在优化的最佳pH和扫速等条件下应用LSV和DPV等电化学方法实现了三种呈味物质在一系列浓度梯度溶液中的定量测定,并将三种物质在对应电极上的检测限与其在黄酒中的含量进行了比较,结果显示含量均远大于检测限,说明黄酒中的三种物质含量满足修饰电极响应条件,电极的有效性符合要求。之后在5种地域黄酒中采用复频多电位阶跃法施加于电极阵列获得响应电流信号曲线,选取电流曲线与时间轴所包围区域的面积值作为特征值,结合PCA、LPP、LDA、LIBSVM和ELM等模式识别方法对黄酒地域进行了区分和预测,区分结果显示PCA、LPP和LDA均存在浙江汾湖和浙江同康黄酒类间距过小以及古越龙山黄酒样本点较分散等问题,ELM和LIBSVM区分效果较好,训练集和预测集区分正确率都较高;预测结果显示ELM和LIBSVM两种回归模型表现较好,特别是决定系数R~2较大。
[Abstract]:Yellow rice wine has abundant nutrition, broad market prospects and enjoys the reputation of "national wine". However, due to the lack of quality evaluation methods, illegal behaviors such as false declaration of wine age, labeling of well-known brands and faking geographical indications as inferior products often occur, which seriously infringe the interests of regular manufacturers and consumers. Surface can immobilize nano-materials and polymers with good chemical properties, overcome the weakness and low sensitivity of single material modified electrode and bare electrode. In recent years, it has been used in wine age, region and brand identification. The identification of authenticity and falsity of yellow rice wine quality and the identification and prediction of different wine ages, brands and regions have been successfully realized by pattern recognition method, thus providing a new and reliable solution for purifying the yellow rice wine market and safeguarding the interests of consumers and regular producers. U/GCE, PABSA/Au/GCE and PASP/Pt/GCE modified glassy carbon electrode arrays were successfully used to distinguish and predict six kinds of Shaoxing Guyuelongshan yellow wine aged 3 years, 5 years, 8 years, 10 years, 15 years and 20 years. PACBK/Au/GCE, PABSA/Au/GCE and PASP/Pt/GCE polymer/metal nanocomposites modified electrodes were prepared by cyclic voltammetry (CV) and current-time method (i-t) with acid (amino acid, astringent taste) and glucose (sugar, sweet taste). The electrode was modified by PACBK/Au/GCE, PABSA/Au/GCE and PASP/Pt/GCE. Under the conditions of optimizing pH, sweeping rate and buffer concentration, the three flavoring substances were detected. Quantitative determination in a series of concentration gradient solutions showed that the content of the three substances in yellow rice wine was much higher than the detection limit by comparing the detection limit of the three substances on the electrode and the content in yellow rice wine. On this basis, the complex frequency multi-potential step method was applied to the electrode array as excitation signal in six kinds of rice wine samples. The response current signal curve and the area around the time axis were selected as eigenvalues, combined with principal component analysis (PCA), partial retention projection (LPP), linear discriminant analysis (LDA) and support vector machine (LSSVM, LIBSVM). Pattern recognition method was used to distinguish and predict the age of yellow rice wine. Among the three models, PCA, LPP and LDA, LDA was the best. In the two-dimensional and three-dimensional charts, six kinds of yellow rice wine could be separated obviously; LSSVM and LIBSVM were better than LSSVM in predicting the age of yellow rice wine, especially the mean square deviation was smaller. BK/Au/GCE, PABSA/Au/GCE, PGA/Cu/GCE and PGA/Cu/GCE modified glassy carbon electrode arrays were successfully used to distinguish and predict three kinds of Shaoxing rice wine from three kinds of Guyue Longshan, three kinds of Tapai and a total of seven brands of Jishan. In this part, three flavoring substances, vitamin C (vitamin, acid), tyrosine (amino acid), with relatively large content difference among the different brands of rice wine were selected. Polymer/metal nanocomposites modified electrodes PACBK/Au/GCE, PABSA/Au/GCE and PGA/Cu/GCE were prepared by cyclic voltammetry and gallic acid (phenols, bitters) respectively. Linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) were used to optimize pH, sweep rate, enrichment potential and time. The quantitative determination of three flavoring substances in a series of concentration gradients was realized by DPV. The detection limits of vitamin C, tyrosine and gallic acid were compared with the actual contents of three flavoring substances in yellow rice wine. The results showed that the actual contents were far greater than the detection limits, indicating that the brand of yellow rice wine was based on modified electrode array. The response current signal curve was obtained by applying square wave and trapezoidal wave multi-potential step method to the electrode array in seven brands of yellow rice wine. The current curve and the area around the time axis were selected as the eigenvalues, combined with PCA, LPP, LDA, LIBSVM, ELM (Extreme Learning Machine) and BPNN (BP Neural Network) etc. The discriminant model showed that there were three kinds of tower rice wine with too small spacing among PCA, LPP and LDA, and the ELM discriminant effect was not ideal, but the LIBSVM model had better effect. The correct discriminant rate of training set and test set was 100% and 99.05% respectively. SVM has a good prediction effect, but BPNN has a good prediction accuracy rate of 97.14%. (3) Using self-made SMWCNT / Au / GCE, PABSA / Au / GCE and PGA / Cu / GCE modified glassy carbon electrode arrays, we have successfully realized five regions: Jiangsu Suanyang (Zhenjiang), Qingdao Jimo (Qingdao), Zhejiang Fenhu (Jiaxing), Zhejiang Tongkang (Taizhou) and Guyue Longshan (Shaoxing). In this part, three typical flavoring substances, 5'-GMP (additive, delicious), tyrosine (amino acid, astringent taste) and gallic acid (phenolic, bitter taste), were selected to prepare SMWCNT/Au/GCE, PABSA/Au/GCE and PGA/Cu/GCE metal nanocomposites by trickling and cyclic voltammetry. The modified electrode was used to quantitatively determine three flavoring substances in a series of concentration gradient solutions by electrochemical methods such as LSV and DPV under the optimum pH and sweeping speed conditions. The detection limits of the three substances on the corresponding electrode were compared with the contents in rice wine. The results showed that the contents were far greater than the detection limits. The content of the three substances in rice wine satisfies the response condition of the modified electrode and the validity of the electrode meets the requirements.Then the response current signal curve was obtained by applying the complex frequency multi-potential step method to the electrode array in the five regional rice wine.The current curve and the area around the time axis were selected as the eigenvalues and combined with PCA, LPP, LDA, LIB as the eigenvalues. SVM and ELM pattern recognition methods were used to distinguish and predict the regions of yellow rice wine. The results showed that PCA, LPP and LDA had the problems of too small distance between Fenhu and Tongkang yellow rice wine in Zhejiang Province, and scattered sample points of Guyuelongshan yellow rice wine. ELM and LIBSVM had better distinguishing effect, and the training set and prediction set had higher accuracy. It shows that the two regression models of ELM and LIBSVM perform well, especially the determination coefficient R~2 is larger.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS261.7

【相似文献】

相关期刊论文 前10条

1 韩吉林;陈洪渊;;修饰电极在流动体系电化学检测器中的应用与发展[J];化学传感器;1992年04期

2 孙玉堂,,吴建人;银基砷酸银修饰电极测定砷的研究[J];山东建材学院学报;1994年02期

3 罗敏,李辉,曹旭妮,张凌越,金利通;Pt/PolyCuTAPc/Nafion修饰电极及其应用的研究[J];华东师范大学学报(自然科学版);2000年03期

4 吴婧,刘国东,钟桐生,黄杉生,俞汝勤;抗坏血酸在2-氨基吡啶修饰电极上的电催化氧化及其应用[J];分析科学学报;2001年06期

5 吴婧;刘国东;黄杉生;俞汝勤;;苯羟基乙酸修饰电极的研制及应用[J];化学传感器;2001年04期

6 李家贵,陈渊,李家洲,罗济文;聚合物薄膜修饰电极及其新进展[J];玉林师范学院学报;2002年03期

7 张玉忠,赵红,李向军,袁倬斌;大黄酸修饰电极对细胞色素C的催化还原[J];分析试验室;2003年04期

8 袁倬斌,吕元琦,邬春华;多巴胺在聚3,4-吡啶二羧酸修饰电极上的电化学行为及其测定[J];岩矿测试;2003年04期

9 梁汝萍,邱建丁,蔡沛祥;多巴胺在聚L-天冬氨酸修饰电极上的催化氧化及测定[J];中山大学学报(自然科学版);2003年01期

10 胡军福,刘丹萍;茜素红配合物修饰电极的制备及酸溶液中的电催化特性[J];哈尔滨师范大学自然科学学报;2004年01期

相关会议论文 前10条

1 卢小泉;;巯基卟啉修饰电极和小波分析的应用研究[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年

2 李德兰;邹向勤;沈青;董绍俊;;碳纳米管-十六烷基三甲基溴化铵纳米复合体修饰电极检测核酸[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

3 金葆康;汪海燕;王世君;;混合自组装层纳米金修饰电极的制备及电化学行为研究[A];安徽省第五届“兴皖之光”青年学术年会论文集(理科卷)[C];2005年

4 程芹;吴康兵;周宜开;;基于乙炔黑修饰电极测定血清中抗癌新药托泊替康的研究[A];中国生物医学工程学会成立30周年纪念大会暨2010中国生物医学工程学会学术大会报告论文[C];2010年

5 黄秀玲;刘慧宏;;过氧化氢酶修饰电极在有机/水混合溶液中的分析应用[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

6 刘素芹;戴高鹏;;抗坏血酸在聚槲皮素修饰电极上的电化学行为[A];湖北省化学化工学会第十一届分析化学专业年会论文集[C];2007年

7 杨昌柱;黄健;崔艳萍;张敬东;濮文虹;曾巍;;新型纳米金修饰电极的制备及对尿酸和抗坏血酸的电催化氧化[A];第四届海峡两岸分析化学学术会议论文集[C];2006年

8 翟云云;杨勤燕;施国跃;金利通;;MCNTs/mv RuO/RuCN修饰电极的构筑及其电催化性质研究[A];中国化学会第26届学术年会分析化学分会场论文集[C];2008年

9 廖苏琪;王方玲;韦艳芬;方晓雪;李焘;吴佳雯;胡琪;谭学才;;硝苯地平在石墨烯修饰电极上的电化学行为及测定研究[A];中国化学会第十七届全国有机分析与生物分析学术研讨会论文集[C];2013年

10 朱珠;金传明;张海丽;;杯芳烃离子盐修饰电极测定银离子[A];大环化学和超分子化学的新发展——当前学科交叉的一个重要桥梁——中国化学会全国第十五届大环化学暨第七届超分子化学学术讨论会论文摘要集[C];2010年

相关博士学位论文 前10条

1 李银峰;灵敏伏安传感器的构筑及其在药物分析中的应用[D];郑州大学;2015年

2 赵晓娟;石墨烯及类石墨烯与纳米半导体修饰电极的制备及中文其分析应用研究[D];兰州大学;2015年

3 于盛姣;石墨烯/导电聚酰亚胺修饰电极的制备及应用[D];兰州大学;2015年

4 朱文彩;石墨烯基复合物修饰电极的制备及其电化学检测应用[D];山东大学;2015年

5 汤勇铮;纳米碳材料修饰电极测定体液中铝和环境中酚类污染物[D];南京理工大学;2015年

6 刘大亮;陶瓷型脂质体基纳米复合物电极材料的制备及应用[D];辽宁大学;2016年

7 司晓晶;碳基纳米复合材料修饰电极的制备及其在药物分析中的应用[D];上海大学;2016年

8 唐婧;基于碳纳米管复合修饰电极对酚类物质的检测研究[D];安徽大学;2017年

9 郭伟华;多酸基复合修饰电极的制备及其电催化和光电催化性能研究[D];东北师范大学;2010年

10 田利;过渡金属化合物修饰电极的研究[D];吉林大学;2005年

相关硕士学位论文 前10条

1 张莹;噻唑聚合物膜修饰电极的制备及其在生物分析中的应用[D];上海师范大学;2015年

2 杨纪春;新型功能化碳纳米管修饰电极的构建及其应用研究[D];辽宁大学;2015年

3 唐巍敏;几种新型酚类传感器的构置及应用研究[D];西安建筑科技大学;2015年

4 索高超;三种金属有机框架化合物合成及其电化学生物传感器的构筑研究[D];西安建筑科技大学;2015年

5 杨凌茜;食品添加成分的电化学分析方法研究[D];郑州大学;2015年

6 林妍;PTFE修饰电极的制备及其在芳香有机物电合成中的应用[D];福建师范大学;2015年

7 刘振平;纳米材料电化学传感器的研制及其中药分析中的应用[D];广东药学院;2015年

8 李佳;静电纺丝技术制备微纳纤维及其电化学传感应用[D];中国矿业大学;2015年

9 俞洋;修饰碳纳米管电极电催化降解水中头孢他啶的研究[D];北京化工大学;2015年

10 丁永;基于导电聚合物的复合材料修饰电极的制备及其在铅离子检测中的应用[D];安徽工业大学;2014年



本文编号:2192473

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/pinpaiwenhualunwen/2192473.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5d2ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com