基于金属纳米复合材料修饰电极阵列的黄酒酒龄、品牌和地域鉴别
[Abstract]:Yellow rice wine has abundant nutrition, broad market prospects and enjoys the reputation of "national wine". However, due to the lack of quality evaluation methods, illegal behaviors such as false declaration of wine age, labeling of well-known brands and faking geographical indications as inferior products often occur, which seriously infringe the interests of regular manufacturers and consumers. Surface can immobilize nano-materials and polymers with good chemical properties, overcome the weakness and low sensitivity of single material modified electrode and bare electrode. In recent years, it has been used in wine age, region and brand identification. The identification of authenticity and falsity of yellow rice wine quality and the identification and prediction of different wine ages, brands and regions have been successfully realized by pattern recognition method, thus providing a new and reliable solution for purifying the yellow rice wine market and safeguarding the interests of consumers and regular producers. U/GCE, PABSA/Au/GCE and PASP/Pt/GCE modified glassy carbon electrode arrays were successfully used to distinguish and predict six kinds of Shaoxing Guyuelongshan yellow wine aged 3 years, 5 years, 8 years, 10 years, 15 years and 20 years. PACBK/Au/GCE, PABSA/Au/GCE and PASP/Pt/GCE polymer/metal nanocomposites modified electrodes were prepared by cyclic voltammetry (CV) and current-time method (i-t) with acid (amino acid, astringent taste) and glucose (sugar, sweet taste). The electrode was modified by PACBK/Au/GCE, PABSA/Au/GCE and PASP/Pt/GCE. Under the conditions of optimizing pH, sweeping rate and buffer concentration, the three flavoring substances were detected. Quantitative determination in a series of concentration gradient solutions showed that the content of the three substances in yellow rice wine was much higher than the detection limit by comparing the detection limit of the three substances on the electrode and the content in yellow rice wine. On this basis, the complex frequency multi-potential step method was applied to the electrode array as excitation signal in six kinds of rice wine samples. The response current signal curve and the area around the time axis were selected as eigenvalues, combined with principal component analysis (PCA), partial retention projection (LPP), linear discriminant analysis (LDA) and support vector machine (LSSVM, LIBSVM). Pattern recognition method was used to distinguish and predict the age of yellow rice wine. Among the three models, PCA, LPP and LDA, LDA was the best. In the two-dimensional and three-dimensional charts, six kinds of yellow rice wine could be separated obviously; LSSVM and LIBSVM were better than LSSVM in predicting the age of yellow rice wine, especially the mean square deviation was smaller. BK/Au/GCE, PABSA/Au/GCE, PGA/Cu/GCE and PGA/Cu/GCE modified glassy carbon electrode arrays were successfully used to distinguish and predict three kinds of Shaoxing rice wine from three kinds of Guyue Longshan, three kinds of Tapai and a total of seven brands of Jishan. In this part, three flavoring substances, vitamin C (vitamin, acid), tyrosine (amino acid), with relatively large content difference among the different brands of rice wine were selected. Polymer/metal nanocomposites modified electrodes PACBK/Au/GCE, PABSA/Au/GCE and PGA/Cu/GCE were prepared by cyclic voltammetry and gallic acid (phenols, bitters) respectively. Linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) were used to optimize pH, sweep rate, enrichment potential and time. The quantitative determination of three flavoring substances in a series of concentration gradients was realized by DPV. The detection limits of vitamin C, tyrosine and gallic acid were compared with the actual contents of three flavoring substances in yellow rice wine. The results showed that the actual contents were far greater than the detection limits, indicating that the brand of yellow rice wine was based on modified electrode array. The response current signal curve was obtained by applying square wave and trapezoidal wave multi-potential step method to the electrode array in seven brands of yellow rice wine. The current curve and the area around the time axis were selected as the eigenvalues, combined with PCA, LPP, LDA, LIBSVM, ELM (Extreme Learning Machine) and BPNN (BP Neural Network) etc. The discriminant model showed that there were three kinds of tower rice wine with too small spacing among PCA, LPP and LDA, and the ELM discriminant effect was not ideal, but the LIBSVM model had better effect. The correct discriminant rate of training set and test set was 100% and 99.05% respectively. SVM has a good prediction effect, but BPNN has a good prediction accuracy rate of 97.14%. (3) Using self-made SMWCNT / Au / GCE, PABSA / Au / GCE and PGA / Cu / GCE modified glassy carbon electrode arrays, we have successfully realized five regions: Jiangsu Suanyang (Zhenjiang), Qingdao Jimo (Qingdao), Zhejiang Fenhu (Jiaxing), Zhejiang Tongkang (Taizhou) and Guyue Longshan (Shaoxing). In this part, three typical flavoring substances, 5'-GMP (additive, delicious), tyrosine (amino acid, astringent taste) and gallic acid (phenolic, bitter taste), were selected to prepare SMWCNT/Au/GCE, PABSA/Au/GCE and PGA/Cu/GCE metal nanocomposites by trickling and cyclic voltammetry. The modified electrode was used to quantitatively determine three flavoring substances in a series of concentration gradient solutions by electrochemical methods such as LSV and DPV under the optimum pH and sweeping speed conditions. The detection limits of the three substances on the corresponding electrode were compared with the contents in rice wine. The results showed that the contents were far greater than the detection limits. The content of the three substances in rice wine satisfies the response condition of the modified electrode and the validity of the electrode meets the requirements.Then the response current signal curve was obtained by applying the complex frequency multi-potential step method to the electrode array in the five regional rice wine.The current curve and the area around the time axis were selected as the eigenvalues and combined with PCA, LPP, LDA, LIB as the eigenvalues. SVM and ELM pattern recognition methods were used to distinguish and predict the regions of yellow rice wine. The results showed that PCA, LPP and LDA had the problems of too small distance between Fenhu and Tongkang yellow rice wine in Zhejiang Province, and scattered sample points of Guyuelongshan yellow rice wine. ELM and LIBSVM had better distinguishing effect, and the training set and prediction set had higher accuracy. It shows that the two regression models of ELM and LIBSVM perform well, especially the determination coefficient R~2 is larger.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS261.7
【相似文献】
相关期刊论文 前10条
1 韩吉林;陈洪渊;;修饰电极在流动体系电化学检测器中的应用与发展[J];化学传感器;1992年04期
2 孙玉堂,,吴建人;银基砷酸银修饰电极测定砷的研究[J];山东建材学院学报;1994年02期
3 罗敏,李辉,曹旭妮,张凌越,金利通;Pt/PolyCuTAPc/Nafion修饰电极及其应用的研究[J];华东师范大学学报(自然科学版);2000年03期
4 吴婧,刘国东,钟桐生,黄杉生,俞汝勤;抗坏血酸在2-氨基吡啶修饰电极上的电催化氧化及其应用[J];分析科学学报;2001年06期
5 吴婧;刘国东;黄杉生;俞汝勤;;苯羟基乙酸修饰电极的研制及应用[J];化学传感器;2001年04期
6 李家贵,陈渊,李家洲,罗济文;聚合物薄膜修饰电极及其新进展[J];玉林师范学院学报;2002年03期
7 张玉忠,赵红,李向军,袁倬斌;大黄酸修饰电极对细胞色素C的催化还原[J];分析试验室;2003年04期
8 袁倬斌,吕元琦,邬春华;多巴胺在聚3,4-吡啶二羧酸修饰电极上的电化学行为及其测定[J];岩矿测试;2003年04期
9 梁汝萍,邱建丁,蔡沛祥;多巴胺在聚L-天冬氨酸修饰电极上的催化氧化及测定[J];中山大学学报(自然科学版);2003年01期
10 胡军福,刘丹萍;茜素红配合物修饰电极的制备及酸溶液中的电催化特性[J];哈尔滨师范大学自然科学学报;2004年01期
相关会议论文 前10条
1 卢小泉;;巯基卟啉修饰电极和小波分析的应用研究[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
2 李德兰;邹向勤;沈青;董绍俊;;碳纳米管-十六烷基三甲基溴化铵纳米复合体修饰电极检测核酸[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
3 金葆康;汪海燕;王世君;;混合自组装层纳米金修饰电极的制备及电化学行为研究[A];安徽省第五届“兴皖之光”青年学术年会论文集(理科卷)[C];2005年
4 程芹;吴康兵;周宜开;;基于乙炔黑修饰电极测定血清中抗癌新药托泊替康的研究[A];中国生物医学工程学会成立30周年纪念大会暨2010中国生物医学工程学会学术大会报告论文[C];2010年
5 黄秀玲;刘慧宏;;过氧化氢酶修饰电极在有机/水混合溶液中的分析应用[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
6 刘素芹;戴高鹏;;抗坏血酸在聚槲皮素修饰电极上的电化学行为[A];湖北省化学化工学会第十一届分析化学专业年会论文集[C];2007年
7 杨昌柱;黄健;崔艳萍;张敬东;濮文虹;曾巍;;新型纳米金修饰电极的制备及对尿酸和抗坏血酸的电催化氧化[A];第四届海峡两岸分析化学学术会议论文集[C];2006年
8 翟云云;杨勤燕;施国跃;金利通;;MCNTs/mv RuO/RuCN修饰电极的构筑及其电催化性质研究[A];中国化学会第26届学术年会分析化学分会场论文集[C];2008年
9 廖苏琪;王方玲;韦艳芬;方晓雪;李焘;吴佳雯;胡琪;谭学才;;硝苯地平在石墨烯修饰电极上的电化学行为及测定研究[A];中国化学会第十七届全国有机分析与生物分析学术研讨会论文集[C];2013年
10 朱珠;金传明;张海丽;;杯芳烃离子盐修饰电极测定银离子[A];大环化学和超分子化学的新发展——当前学科交叉的一个重要桥梁——中国化学会全国第十五届大环化学暨第七届超分子化学学术讨论会论文摘要集[C];2010年
相关博士学位论文 前10条
1 李银峰;灵敏伏安传感器的构筑及其在药物分析中的应用[D];郑州大学;2015年
2 赵晓娟;石墨烯及类石墨烯与纳米半导体修饰电极的制备及中文其分析应用研究[D];兰州大学;2015年
3 于盛姣;石墨烯/导电聚酰亚胺修饰电极的制备及应用[D];兰州大学;2015年
4 朱文彩;石墨烯基复合物修饰电极的制备及其电化学检测应用[D];山东大学;2015年
5 汤勇铮;纳米碳材料修饰电极测定体液中铝和环境中酚类污染物[D];南京理工大学;2015年
6 刘大亮;陶瓷型脂质体基纳米复合物电极材料的制备及应用[D];辽宁大学;2016年
7 司晓晶;碳基纳米复合材料修饰电极的制备及其在药物分析中的应用[D];上海大学;2016年
8 唐婧;基于碳纳米管复合修饰电极对酚类物质的检测研究[D];安徽大学;2017年
9 郭伟华;多酸基复合修饰电极的制备及其电催化和光电催化性能研究[D];东北师范大学;2010年
10 田利;过渡金属化合物修饰电极的研究[D];吉林大学;2005年
相关硕士学位论文 前10条
1 张莹;噻唑聚合物膜修饰电极的制备及其在生物分析中的应用[D];上海师范大学;2015年
2 杨纪春;新型功能化碳纳米管修饰电极的构建及其应用研究[D];辽宁大学;2015年
3 唐巍敏;几种新型酚类传感器的构置及应用研究[D];西安建筑科技大学;2015年
4 索高超;三种金属有机框架化合物合成及其电化学生物传感器的构筑研究[D];西安建筑科技大学;2015年
5 杨凌茜;食品添加成分的电化学分析方法研究[D];郑州大学;2015年
6 林妍;PTFE修饰电极的制备及其在芳香有机物电合成中的应用[D];福建师范大学;2015年
7 刘振平;纳米材料电化学传感器的研制及其中药分析中的应用[D];广东药学院;2015年
8 李佳;静电纺丝技术制备微纳纤维及其电化学传感应用[D];中国矿业大学;2015年
9 俞洋;修饰碳纳米管电极电催化降解水中头孢他啶的研究[D];北京化工大学;2015年
10 丁永;基于导电聚合物的复合材料修饰电极的制备及其在铅离子检测中的应用[D];安徽工业大学;2014年
本文编号:2192473
本文链接:https://www.wllwen.com/guanlilunwen/pinpaiwenhualunwen/2192473.html