大数据思维的三板斧
导读:大数据思维看起来高大上,实际上,概括起来就三条:第一认识大数据飞轮,第二理解数据资产评估,第三运用泛互联范式。
图1:大数据思维
上述讲的关于大数据思维的每一条都用一幅图来表达,每个图中的圆圈都有许多案例来佐证。其实,图1涵盖了大数据思维的全部思想。这幅图里外三层、上下结构,看起来比较复杂,所以后面拆成三幅图来讲。思维的过程是自上而下、自外而里的。图的上半部分讲得是大数据的商业功用,就是说有了大数据我们能干什么?怎么赚钱?有哪些好玩的商业模式?以前常说“羊毛出在羊身上”,搞懂这些模式你会发现原来可以“羊毛出在狗身上”。
六种商业模式简述
围绕数据资产,笔者曾考察不同行业的盈利方式和经营策略,归纳总结了六种商业模式。
租售数据模式:简单来说,就是售卖或者出租广泛收集、精心过滤、时效性强的数据。这也是数据就是资产的最经典的诠释。按照销售对象的不同,又分为两种类型。第一是作为客户增值服务。譬如销售导航仪的公司,同时为客户提供即时交通信息服务。广联达公司为他的客户提供包年的建筑材料价格数据。仅此一项业务,年收入超过1亿元人民币。第二是把客户数据,有偿提供给第三方。典型的如证券交易所,把股票交易行情数据授权给一些做行情软件的公司。
租售信息模式:一般聚焦某个行业,广泛收集相关数据、深度整合萃取信息,以庞大的数据中心加上专用传播渠道,也可成一方霸主。信息指的是经过加工处理,承载一定行业特征数据集合。
数字媒体模式:这个模式最性感,因为全球广告市场空间是5000亿美元。具备培育千亿级公司的土壤和成长空间。这类公司的核心资源是获得实时、海量、有效的数据,立身之本是大数据分析技术,盈利来源多是精准营销和信息聚合服务。
数据使能模式:这类业务令人着迷之处在于,如果没有大量的数据,缺乏有效的数据分析技术,这些公司的业务其实难以开展。譬如阿里金融为代表的小额信贷公司。通过在线分析小微企业的交易数据、财务数据,甚至可以计算出应提供多少贷款,多长时间可以收回等关键问题。把坏账风险降到最低。
数据空间运营模式:从历史上,传统的IDC就是这种模式,互联网巨头都在提供此类服务。但近期网盘势头强劲,从大数据角度来看,各家纷纷嗅到大数据商机,开始抢占个人、企业的数据资源。海外的Dropbox,国内微盘都是此类公司的代表。这类公司的发展空间在于可以成长为数据聚合平台,盈利模式将趋于多元化。
大数据技术提供商:从数据量上来看,非结构化数据是结构化数据的5倍以上,任何一个种类的非结构化数据处理,都可以重现现有结构化数据的辉煌。语音数据处理领域、视频数据处理领域、语义识别领域、图像数据处理领域都可能出现大型的、高速成长的公司。
明白大数据的功用后,大家自然而然地关心,数据这么值钱,理所当然应构成新型的资产。图1的中间部分描述了这块内容。"数据成为资产"这一原创论断成为大数据思维的中心理论。
图2数据资产评估模型给出一个完整的思维框架来描述数据资产的价值。但是这方面的工作远远不够,无法定量的给出评估。我曾经说,学术界如果在数据资产的定量评估上取得进展,是可以获得诺贝尔奖的。因为这和公司的估值紧密相关。产业界在信用定量计算方面己经走在前列,并付诸商用,但是离一般意义上的数据资产估值还相去甚远。
图2:数据资产评估模型
既然数据成为资产,资产间的交易也会提上日程。联盟特别任命两位副秘书长推进这个事情,从而传播开放、共享的理念。借此呼吁所有愿意开放数据资源的企业,,却可以借助联盟的力量,来共同推进。
数据成为资产是在了解大数据功用基础上的抽象认知。接下来看,图1的下半部分,泛互联范式。这个范式给出了不断的采集数据并且发挥数据价值的行动指南。许多公司的转型,都要从这幅图开始。见图3。终端+平台+应用+大数据四位一体,构成大数据思维的行动指南。最近和一些公司聊,他们己经了解了数据的重要性,开始想些损招去“劫掠”客户的数据。这不免误入歧图。还是认真研究一下这个范式,从应用、终端上动动脑筋,真正的为用户提供靠谱的服务,才是上策。
图3:泛互联范式
回顾图1,我们在讲大数据思维时,利用自上而下的次序,从大数据的功用入手,深入到理论内核,再到可供操作的范式。但真正上手实践,需要脚踏实地,自下而上的行动。
(来源:大数据实验室 作者:赵国栋)
文章为作者独立观点,不代表经管之家立场
本文编号:17206
本文链接:https://www.wllwen.com/guanlilunwen/sjfx/17206.html