基于多元统计理论的工业故障检测与诊断研究
本文关键词:基于多元统计理论的工业故障检测与诊断研究,由笔耕文化传播整理发布。
哈尔滨理T人学T学顺I:学位论文;monitoringmethodfortheba;onlocalPCA【C】.Proceeding;andCyberneticsxi’an,2-5,;[13】张立君,刘爱伦.基于改进主元分析方法的化;控制计算机,2006,19(1):21.25.;【14】杨莉.基于主元分析的多变量统计的故障辨识;2004,2(4):256—
哈尔滨理T人学T学顺I:学位论文
monitoringmethodforthebatchprocessusingmultiple
onlocalPCA【C】.ProceedingsoftheSecondInternationalConferenceMachineLearning
andCyberneticsxi’an,2-5,2003.
[13】张立君,刘爱伦.基于改进主元分析方法的化工过程的故障检测【J】.工业
控制计算机,2006,,19(1):21.25.
【14】杨莉.基于主元分析的多变量统计的故障辨识技术[J】.信息与电子工程,
2004,2(4):256—258.
[15】冯俊婷,王桂增,徐铁.基于在主元分析的核电站主冷却剂泵故障诊断
[J】.原子能科学技术,2003,37(5):395.399.
【16]T惠文.偏最小二乘四l归方法及其应用[M】.国防工业出版社,1999.
【17]CHINGLH,RUSSELLEL,BRAATZR
usingFisherdiscriminantD.Faultdiagnosisinchemicalpartialleastprocessesanalysis,discriminant
aquares,andprincipalcomponentanalysis【J】.ChemometricsandIntelligentLaboratorySystems,2000,50:243-252.
【18]HIMESDM,STORERRH,GEORGAKISC.Determinationofthenumber
ofprincipal
thecomponentfordisturbancedetectionandisolation[C].InProc.ofAmericanControlConfi,pages1279-1283,Piscataway,NewJersey,l994.IEEEPress.
【19]PIOVOSOMJ,KOSANOVICHKA,PEARSONRK.Monitoringprocess
performanceinrealtime【C】.Inproc.OftheAmericanControlConf.,pages2359—2363,Piscataway,NewJersey,1992.IEEEPress.
[20]STORERWKuRH,GEORGAKISC.Disturbancedetectionand
andisolationbyIntelligentdynamicprincipalcomponentanalysis【J].Chemometrics
LaboratorySystems,1995,30:179—196.
[21]WOLD
【22]RAICHS,ESBENSENK,GELADIP.Principalcomponentsanalysisand[J】.ChemometricsandIntelligentLaboratorySystems,1987,2:37.A.StatisticalprocessmonitoringdisturbanceAC,CINAR
isolationinmultivariate
Conf.oncontinuousprocessesfCl.InProc.OftheIFACAdvancedControlofChemicalProcesses,Pages427—435,NewYork,1994.PergamonPress.
【23]TIPPING
『J1.ME,BISHOPCM.ProbalicisticPrincipalComponentAnalysisJ.R.Statist.SOC.B.,1999,61(3):611.122.
HM,MOUROTG,RAGOTJ.NonlinearPCAcombiningprincipal【24]FAOUZI
..66..
哈尔滨删T人学T学坝fj学位论文!!!!=!!!!!==自==}!!=!==!=!==!!=mI!!!=!=!!===!自g!E=jE!e!!!!==22m
curvesandRBF—Networksforprocess
onmonitoring[C】.Proceedingsofthe42naIEEE.Conference
2003.DecisionandControlMaui,Hawaii,USA,Dec.,
[25]GELADIP,KOWALSKIBR.Partialleast—squaresregression
【J】.Atutofial.AnalyticaChimicaActa,1986,185:1一17.
[26]HASTIETJ,STUETZLEW.Principalcurves[J】.JournalofAmerican
statisticalassociation,l989,84:502.516.
【271KRAMERMA.Nonlinearprincipalanalysisusingautoassociativeneural
networks[J】.AICHEJ,1991,37:233?243.
[28]DONGD,MAAVOYTJ.Nonlinear
andneuralprincipalanalysisbasedandChemicalonprincipalcurenetworks[J】.ComputersEngineering,1996,20(11:65-78.
[29]TanS.MavrovouniotisM
optimizingneuralL.Reducingdatadimensionalitythroughnetworksinputs[J】.AICHEJ,1995,41(6):1471—1480.[30]BAKSHI
processBR.MultiscalePCAwithapplicationtomultivariatestatisticalmonitoring[J】.AICHE,1998,44(7):1596?1610.
GJ,LIANG【3IICHENJ,QIANJX.Applicationofblindsourseanalysisto
multivariate
&Signalstatisticalprocessmonitoring[C】.IEEE.Int.conf.NeuralProcessing.Nanjing,China,December,14一17,2003.
E【32]KEMSLEYK.Discriminantanalysisofhigh-dimensionaldata:
Acomparisonofprincipalcomponentanalysisandpartialleastsaquaresdata
IntelligentLaboratoryreductionmethods[J】.Chemometricsand
1996,33:47.61.Systems,
forprocess
Annual【33]HASHIMOTOmonitoringI,KANOprincipalM,NAGAOcomponentK.Anewmethodusinganalysis【J】.InAICHE
Meeting,1999.Paper224.
【341LYMANPR.Plant-wideControlStructuresfortheTennesseeEastman
process,M.S.thesis,Lehigh
[35]RUSSELL
industrialEUniversity,1992.RD.FaultdetectioninL,CHIANGLH,BRAATZprocessesusingcanonicalvariateanalysisanddynamicprincipalcomponentanalysis【J】.Chemometrics
RA.TheuseandIntelligentLaboratorySystems,taxonomic2000,51:81—93.[36]FISHERofmultiplemeasurementsin
.67-
哈小t,t。寅理T人学T学硕I:学位论文
A
problems.Ann.Eugenic【J】.1936,7:179—188.
【37]CINARA,TATARAE,DECICCOJ.Automatedpatientmonitoringand
integratingstatisticalandartificialdiagnosisassistancebyintelligencetools
[C】.Proc.of
[38]BISHOPtheAnnualConf.onEngineeringinMedicine&Biology,1999,2:700—710.C.NeuralNetworksforPatternRecognition【C】.ClarendonPress,
NewTork,1995.
[39]QINSJ,DUNIAR.Determiningthenumberofprincipalcomponentsforbest
ofProcessreconstruction[J】.Journal
【40]GELADIP.NotesonControl,2000,10(2):245—250.Squares(PLS)thehistoryandnatureofPartialLeast
modeling[J】.Chemometr,1988,2:231-246.
[4l】张菊秀.多传感器信息融合技术和发展[J】.电子世界,2004,4:35.39.[42]ZHANG
[43]MARTINJ,YANGXH.MultivariateStatisticalProcessControl[C】.Beijing:ChemicalEIndustryPress,2000.B,MORRISAJ,ZHANGJ.Processperformancemonitoring
usingmultivariatestatisticalprocess
ApplIVol143,No2,March1996.control[C】.1EEProc-ControlTheory
[44]LIEFUCHT
FaultsUsingD,KrugerU,GeorgeW.ImprovedDiagnosisofSensorMultivariateStatistics[C】.Proceedingofthe2004AmericanControlConferenceBoston,MssachusettsJune30一July2,2004.
[45]KRESTA
monitoringJofV,MacgregorJprocessF,MARLINTE.MultivariatestatisticalJournalofperformance[J].Canadian
M.DetectionofgrosserrorsChemicalEngineering,1991,69:35—47.[46]TONGH,GROWECindatereconciliation
byprincipalcomponentanalysis[J】.AIChE.J,1995,41:1721-1732.
SJ.SubspaceApproachto[47]DUNIAR,QI-N
IdentificationMultidimensionalFaultandReconstruction[J】.AIChE.J,1998,44:1813—1831.
Q,SONGZH,LIP.FaultDetectionBehaviorand【48]WANGH
PerformanceAnalysisofPCA2basedProcessMonitoringMethods.IndlEnglChemlResl,2002,41:2455.2464.
【49]HELLAND
algorithmK,BERNTSENHE,BORGENOS,MARTENSH.Recursiveforpartialleastsquaresregression[J】.ChemometricsIntell.Lab.Syst.,1992,14:129.137..68.
哈尔滨胖T人学_r学顾fj学位论文
[50]NOMIKOSP,MACGREGORJF.Monitoringbatchprocessusing
multiwayprincipalcomponentanalysis[J】.AIChE.J,1994,40(8):1361一1375.
[51]YUANJQ,VANROLLEGHEMPA.RocllingLearning—Predicationofproduct
formationinbioprocesses[J】.JournalofBiotechnology,1999,69:47?62.[52]NOMIKOSP.MacgregorJF.Multiwaypartialleastsquaresinmonitoring
batchprocess[J】.Chem.Intell.Lab.Syst.,1995,30:97-115.
[53]PENTLANDA,MOGHADDAMB,STARNERT.View—basedandmodular
eigenspacesforfacerecognition[A】.ProcIEEEComputerSocietyConferenceOnComputerVisionandPatternRecognition[C].Seattle,1994,84-91.
[54]DONGD,MCAVOYTJ.Batchtrackingvianonlinearprincipalcomponent
analysisfJ】.AICHEJounnal1996,42(8):2199—2208.
[55]SCHLKOPFB,SMOLAA.MULLERK.Nonlinearcomponentanalysisasa
kerneleigenvalueproblem【J】.Neuralcomputation,1998,10(5):1299—1399.
【56]JOHNST,NELLOC.KernelMethodsforPatternAnalysis【M】.England:
CambridgeUniversityPress,2004.
[57]WISEBM,RICKERNL,VELKAMPDJ.Atheoreticalbasisforthe
useofprincipalcompontmodelsformonitoringmultivariateprocesses
【J】.ProcessControlandQUALITY,1990,1:41-51.
【58]SMOLAAJ.Learningwithkernels【D】.Berlin:TechnicalUniversityof
Berlin,1998.
[59]LeeJM,YooCK,LEEIB.Faultdetectionofbatchprocessesusing
multiwavkernelprincipalcomponentanalysis[J】.ComputersandChemicalEngineering,2004,28(9):1837—1840..69.
l喻尔滨理T人学T学顺Ij学位论文
攻读学位期间发表的学术论文
1吕宁,刘少波,于晓洋.基于主元空间统计的传感器故障诊断与重构.自动化技术与应用,2008,(4).
下载地址:基于多元统计理论的工业故障检测与诊断研究_图文15.Doc
【】最新搜索
基于多元统计理论的工业故障检测与诊断研究_图文
事业单位试题29
562016-2022年中国移动运营市场现状调研与发展前景趋
八下思品1-5课知识点
《感动的事》作文集锦60
94我的教师生涯演讲稿
来生做一个江南女孩_图文06
4种苔藓植物对干旱的适应能力研究
充分利用课堂导入 激发物理学习兴趣01
4种苔藓植物对干旱的适应能力研究03
本文关键词:基于多元统计理论的工业故障检测与诊断研究,由笔耕文化传播整理发布。
本文编号:212324
本文链接:https://www.wllwen.com/guanlilunwen/tongjijuecelunwen/212324.html