基于SaaS的园区物流资源撮合平台的研究与实现
本文选题:SaaS + 物流园区 ; 参考:《武汉理工大学》2015年硕士论文
【摘要】:物流业是国民经济的基础产业,象征着一个国家的现代化发展水平,是综合国力的重要表现形式。而物流园区作为物流产业的聚集地,是现代物流体系中的重要节点,其信息化水平关系到园区本身经济效益的发挥和市场竞争力的提高。目前我国物流园区内的企业大多有着自己的信息管理系统,彼此之间缺乏联系和交互,形成了一个个“信息孤岛”,无法实现园区物流资源的信息共享和优化配置。在这样的大环境和实际需求下,本文引入了软件即服务的思想,对园区物流资源撮合平台的整体方案进行了研究,在此基础上设计并实现了一个基于SaaS service a as software)(的园区物流资源撮合平台。本文首先对SaaS的相关理论和平台的功能需求进行了分析,并以此为基础对平台的整体方案进行了设计,平台主要由两大部分组成:软件服务租赁平台和园区物流资源撮合系统。软件服务租赁平台主要实现物流资源撮合系统的按需租赁,园区物流资源撮合系统主要实现物流资源的撮合与共享。为了实现系统的撮合功能,本文研究了组合优化问题的解决方法,并归纳出货物资源与运力资源撮合的数学模型,设计了一种基于遗传算法的园区物流资源撮合方法,同时对算法的实现过程和结果进行了阐述与验证。针对算法在撮合过程中存在的问题进行了改进,并将本文的改进算法与常见改进算法在撮合效果和时间效率两个方面进行了对比,验证了改进的有效性。由于撮合功能的撮合过程需要使用物流企业的信用评价结果,所以本文提出了一种基于模糊综合评价法和层次分析法的园区物流企业信用评价模型。首先结合物流园区的背景以及企业信用指标的选取原则,确定信用评价的指标集,然后通过层次分析法计算它们各自的权重,最后通过模糊综合评价法计算物流企业综合得分并完成评级。通过以上理论及分析,最后使用了SQL Server 2008数据库和ASP.NET技术实现了基于SaaS的园区物流资源撮合平台。
[Abstract]:Logistics industry is the basic industry of national economy, symbolizes a country's modernization development level, is the important manifestation of comprehensive national strength. As the gathering place of logistics industry, logistics park is an important node in modern logistics system. Its informatization level is related to the exertion of economic benefits and the improvement of market competitiveness. At present, most of the enterprises in the logistics park in our country have their own information management system, lack of contact and interaction between each other, forming a "isolated information island", which can not realize the sharing of information and the optimal allocation of logistics resources in the park. In such a big environment and actual demand, this paper introduces the idea of software as a service, and studies the overall plan of the logistics resource matching platform in the park. On this basis, we design and implement a logistics resource matching platform based on SaaS service a as software. In this paper, the related theories of SaaS and the functional requirements of the platform are analyzed, and the overall scheme of the platform is designed. The platform is mainly composed of two parts: the software service leasing platform and the park logistics resource matching system. The software service leasing platform mainly realizes the on-demand lease of logistics resource matching system, and the park logistics resource matching system mainly realizes the matching and sharing of logistics resources. In order to realize the matching function of the system, this paper studies the solution to the combinatorial optimization problem, sums up the mathematical model of the matching of cargo resources and transportation resources, and designs a genetic algorithm based matching method for park logistics resources. At the same time, the implementation process and results of the algorithm are described and verified. The problems existing in the matching process are improved, and the effectiveness of the improved algorithm is verified by comparing the improved algorithm with the common improved algorithm in matching effect and time efficiency. As the matching process of matchmaking function needs to use the credit evaluation results of logistics enterprises, this paper presents a credit evaluation model of logistics enterprises in parks based on fuzzy comprehensive evaluation and AHP. Firstly, combining the background of logistics park and the selection principle of enterprise credit index, the index set of credit evaluation is determined, and then their respective weights are calculated by analytic hierarchy process (AHP). Finally, the fuzzy comprehensive evaluation method is used to calculate the comprehensive score of logistics enterprises and complete the rating. Through the above theory and analysis, SQL Server 2008 database and ASP.NET technology are used to realize the park logistics resource matchmaking platform based on SaaS.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F259.2;TP18
【参考文献】
相关期刊论文 前10条
1 何黎明;;2014年我国物流业发展回顾与2015年展望[J];中国流通经济;2015年02期
2 王爽;;京津冀一体化背景下区域物流集群发展的竞合分析[J];中国流通经济;2015年01期
3 姜华;刘洋;杨静;;基于AHP-模糊综合评价法的第三方物流企业绩效评估应用[J];物流技术;2015年01期
4 刘伯颖;李志刚;黄晓勤;方祥;;复杂系统的可靠性优化分配方法及应用[J];电工技术学报;2014年S1期
5 张鹏;吕靖;杨雪娇;艾云飞;;保税物流园区竞争性选址问题优化模型[J];数学的实践与认识;2014年16期
6 赵旭;王伟;;动态规划理论在DSAMDP方法中的优化研究[J];计算机工程与应用;2014年22期
7 郑春;;基于多影响因素的电子商务物流信用评价体系构建研究[J];物流技术;2013年20期
8 吴华锋;陈信强;毛奇凰;张倩楠;张寿春;;基于自然选择策略的蚁群算法求解TSP问题[J];通信学报;2013年04期
9 高丽君;;基于贝叶斯模型平均生存模型的中小企业信用风险估计[J];中国管理科学;2012年S1期
10 陈明伟;朱登明;毛天露;王兆其;;基于分支定界法的运动控制相机轨迹跟踪[J];系统仿真学报;2012年09期
相关博士学位论文 前2条
1 郑永清;云计算环境面向SaaS多租户的可伸缩数据放置研究[D];山东大学;2013年
2 谭艳艳;几种改进的分解类多目标进化算法及其应用[D];西安电子科技大学;2013年
相关硕士学位论文 前1条
1 韩学奇;基于SaaS模式的信息系统架构优化研究与应用[D];北京交通大学;2014年
,本文编号:1937535
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/1937535.html