基于高频数据的量价动态关系研究
[Abstract]:In recent years, with the continuous development of computing technology and electronic trading system, as well as the decline of transaction costs, data acquisition and processing methods in the financial market have been continuously improved, and the acquisition of high-frequency data is becoming more and more convenient. Compared with the low frequency data, the high frequency data has more abundant market information, so it has become one of the research hotspots. With further research and attention, the value of volume-price relationship in the financial world has been greatly improved. There is both static and dynamic relationship between the volume and price changes of stock market. The purpose of this paper is to make use of the high frequency data of stock market over the years to probe into the dynamic relationship between volume and price of stock market. Firstly, this paper introduces the basic concepts and characteristics of high-frequency data in financial markets, and introduces the "realized" fluctuations. Secondly, the four theoretical models of the relationship between volume and price are described in detail. This is of great significance to the empirical analysis using high-frequency data. Although the relationship between trading volume and volatility has always been a focus in the financial field, previous scholars have focused on low-frequency data. Therefore, using high-frequency data to empirically study the relationship between trading volume and volatility has certain significance. On this basis, the GARCH model is constructed, and the ARMA-GARCH prediction model describing the relationship between quantity and price is constructed by combining the mean equation of the ARMA structure. The parameters are estimated and tested based on DCC-GARCH model, and the relationship between volume and price of stock market is analyzed by using high frequency data. The results show that the dynamic correlation between stock price and trading volume is not constant, and it is persistent and time-varying, which is accompanied by strong volatility of market information flow.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:F830.91;F224
【参考文献】
相关期刊论文 前10条
1 眭纪刚;;市场的微观结构和交易机制:关于中间商理论的研究评述[J];财经科学;2008年10期
2 唐振鹏;;金融高频数据和超高频数据的研究现状及展望[J];福州大学学报(哲学社会科学版);2008年04期
3 袁源;;中国证券市场波动性的实证分析[J];系统工程;2008年06期
4 耿克红;张世英;;SCD模型与ACD模型比较研究[J];管理学报;2008年01期
5 郭梁;周炜星;;基于高频数据的中国股市量价关系研究[J];管理学报;2010年08期
6 余德建;吴应宇;周伟;孟笋;;金融超高频数据研究新进展[J];华南理工大学学报(社会科学版);2011年01期
7 何杰;证券市场微观结构理论[J];经济导刊;2000年05期
8 苗晓宇;;(超)高频数据视角下金融风险度量研究进展[J];经济论坛;2010年08期
9 刘建华;;基于高频数据的中国股市量价日内特征分析[J];经济师;2007年10期
10 罗芳,欧阳红兵;证券市场微观结构理论及其对中国证券市场的启示[J];经济问题探索;2000年10期
相关博士学位论文 前3条
1 于亦文;中国证券市场微观结构若干问题研究[D];南京航空航天大学;2005年
2 厉斌;非对称信息条件下中国证券市场价格行为研究[D];天津大学;2005年
3 李胜歌;基于高频数据的金融波动率研究[D];天津大学;2008年
相关硕士学位论文 前8条
1 郑志凌;我国沪深股市价量关系的实证研究[D];西南财经大学;2005年
2 王志刚;我国股票市场交易机制及价格行为实证研究[D];电子科技大学;2005年
3 补冯林;基于超高频数据分析的股票流动性度量实证研究[D];重庆大学;2005年
4 李晓华;不同交易机制下证券市场价格形成过程比较分析[D];武汉大学;2005年
5 姜雪;我国股票市场量价关系的经济分析[D];吉林大学;2008年
6 翟昌立;基于高频数据的中国证券市场特征研究[D];天津大学;2007年
7 刘晓;中国股市波动性与交易量相关关系的实证研究[D];青岛大学;2008年
8 黄文静;交易时间间隔与波动率的研究[D];厦门大学;2008年
,本文编号:2199080
本文链接:https://www.wllwen.com/guanlilunwen/zhqtouz/2199080.html