跳—扩散过程下美式期权的傅立叶变换定价
发布时间:2021-04-17 09:27
美式期权是目前金融市场上交易最为广泛的期权产品,而其中研究得最多的就是股票期权。实证研究表明,金融市场上股票价格并不是简单地服从几何布朗运动,而是呈现出一种尖峰厚尾的分布特征,可以用更为一般的跳-扩散模型来描绘。跳–扩散过程下的美式期权定价属于期权理论上的难点问题,其中最大的难点就在于美式期权的可提前执行特征以及由跳所引起的定价方程的积分非局部性问题,目前运用得最多的方法是基于变分不等式的有限元方法。由于这类方法本身结构复杂,且难于在计算机上编程实现,本文试图运用扩展的傅立叶变换方法来对跳–扩散过程下的美式看跌期权进行定价,以求提供另一种解决此类难题的视角和思路。本文第一章简单介绍了跳–扩散过程下美式期权定价的研究现状,综合比较了目前运用较多的定价方法,然后在此基础上提出本文所采用的方法,最后介绍了本文的主要研究工作。第二章是后续章节的基础,在这一章中,本文首先介绍了金融数学有关无套利定价、鞅、伊藤引理等重要概念和公式,然后具体介绍了B-S-M基本模型和跳–扩散模型,在此基础之上再介绍了本文中拟要解决的美式期权自由边界问题。在介绍完这些数学模型之后,本文接着解释了扩展的傅立叶变换方法—...
【文章来源】:湘潭大学湖南省
【文章页数】:57 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
第一章 绪论
1.1 引言
1.2 论题研究综述
1.3 本文的主要工作
第二章 数学模型及方法简介
2.1 金融数学基础
2.1.1 无套利定价理论
2.1.2 维纳过程和泊松过程
2.1.3 鞅及风险中性定价
2.1.4 伊藤引理及扩展
2.2 B-S-M 模型
2.3 跳–扩散模型
2.4 美式期权自由边界问题
2.5 扩展的傅立叶变换
2.6 柯西留数定理及周线积分
第三章 傅立叶变换定价模型
3.1 麦克基恩定价方法的基本思路
3.2 本文的关键假设
3.3 运用扩展的傅立叶变换
3.4 扩展的傅立叶逆变换
3.5 柯西主值积分形式
3.6 积分等价性转化
第四章 数值求解实现
4.1 两种数值实现方法
4.2 自由边界的确定
4.3 数值实现及比较
结束语
参考文献
致谢
攻读硕士期间完成的论文
本文编号:3143213
【文章来源】:湘潭大学湖南省
【文章页数】:57 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
第一章 绪论
1.1 引言
1.2 论题研究综述
1.3 本文的主要工作
第二章 数学模型及方法简介
2.1 金融数学基础
2.1.1 无套利定价理论
2.1.2 维纳过程和泊松过程
2.1.3 鞅及风险中性定价
2.1.4 伊藤引理及扩展
2.2 B-S-M 模型
2.3 跳–扩散模型
2.4 美式期权自由边界问题
2.5 扩展的傅立叶变换
2.6 柯西留数定理及周线积分
第三章 傅立叶变换定价模型
3.1 麦克基恩定价方法的基本思路
3.2 本文的关键假设
3.3 运用扩展的傅立叶变换
3.4 扩展的傅立叶逆变换
3.5 柯西主值积分形式
3.6 积分等价性转化
第四章 数值求解实现
4.1 两种数值实现方法
4.2 自由边界的确定
4.3 数值实现及比较
结束语
参考文献
致谢
攻读硕士期间完成的论文
本文编号:3143213
本文链接:https://www.wllwen.com/guanlilunwen/zhqtouz/3143213.html
最近更新
教材专著