某工业厂房岩石锚杆基础抗拔性能的分析
[Abstract]:Because the column foundation of a certain industrial factory building is built directly on the rock and the factory building itself is relatively high, the foundation is subjected to greater bending moment and horizontal force, so the foundation adopts rock anchor foundation. The design of anchor bolt adopts the design method of steel structure pillar base bolt. In order to ensure the smooth implementation of the project and to provide theoretical and practical guidance for the subsequent similar projects, the experimental study and finite element analysis of the pull-out force of the foundation of the factory building column are carried out in order to ensure the smooth implementation of the project. In this paper, taking the test of uplift bearing capacity of G row partial anchor foundation as an example, a total of 37 anchors are extracted according to 5% of the total number of anchors, and the uplift bearing capacity of a single anchor rod is monitored on the spot. It is proved that the axial pull-out bearing capacity of a single anchor can meet the 160kN design requirements of the given eigenvalues. With the exception of individual anchors being pulled out, the single bolt can withstand the pull-out force of 260kN without obvious damage. ANSYS finite element numerical simulation software is used to establish an effective three-dimensional model, and the anti-pull-out force of anchor rod is analyzed and calculated, and the results of field test are compared. The experimental value is basically consistent with the analytical value, which shows the effectiveness of the selected finite element model. On this basis, the finite element method is used to study the influence factors of bolt pull-out force. First of all, the elastic modulus of different rock is studied. The displacement curve of rock elastic modulus and free end tensile capacity of anchor can be seen that the displacement of elastic modulus changes greatly when 15~35GPa. It is shown that the anchor rod is especially important for rock mass anchoring when the elastic modulus of rock is small. When the elastic modulus of rock reaches 60GPa, the free end displacement of rock bolt tends to be stable, which indicates that the anchoring effect is not obvious when the material stiffness of rock mass is large. Secondly, the influence of friction coefficient of concrete-anchor rod on the anchoring system is discussed. When the friction coefficient is small, the anchor rod is pulled out with the increase of external load, and the anchor is in the elastic stage in the process. Such failure is mainly due to the failure caused by insufficient friction on the contact surface; When the friction coefficient is large, the reinforcement anchor is first in elastic stage, then in plastic stage, and then increases the external load, the anchor rod is pulled out and the anchoring system is destroyed. In the course of field test, it is found that there is a great amount of surplus of anchor pull-out bearing capacity. Finally, the anchoring depth of anchor rod is further studied. When the anchoring depth is 2.5m, the pull-out bearing capacity is 194kNs, which is 1.2 times of the original design value 160kN. Meet the original requirements. Finally, the relationship between anchor rod diameter and anchor depth is obtained by analysis. In a word, the study shows that improving the tensile strength and the friction of the interface can improve the uplift bearing capacity of the anchoring system, and selecting reasonable anchoring depth can effectively save the project cost and the project construction time.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU476
【参考文献】
相关期刊论文 前10条
1 李伟文;彭伟;杨泳;宋徽;;基于粘结单元的FRP-混凝土粘结界面的数值分析[J];防灾减灾工程学报;2016年01期
2 刘少伟;尚鹏翔;张辉;姜彦军;;煤矿软弱围岩巷道锚杆孔钻扩机理与试验[J];煤炭学报;2015年08期
3 程良奎;范景伦;张培文;周建明;;提高岩土锚杆抗拔承载力的途径、方法及其效果[J];工业建筑;2015年06期
4 潘立业;张昌锁;马洁腾;王银涛;柳明;;高频超声导波检测锚杆有效锚固长度分析[J];煤炭科学技术;2014年12期
5 张小波;赵光明;孟祥瑞;;基于Drucker-Prager屈服准则的圆形巷道围岩弹塑性分析[J];煤炭学报;2013年S1期
6 刘雪锋;涂光亚;易壮鹏;;钢管与核心混凝土之间的粘结单元及其应用[J];中外公路;2012年06期
7 王者超;赵建纲;李术才;薛翊国;张庆松;姜彦彦;;循环荷载作用下花岗岩疲劳力学性质及其本构模型[J];岩石力学与工程学报;2012年09期
8 杨强;冷旷代;张小寒;刘耀儒;;Drucker-Prager弹塑性本构关系积分:考虑非关联流动与各向同性硬化[J];工程力学;2012年08期
9 袁小平;刘红岩;王志乔;;基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究[J];岩土力学;2012年04期
10 王海龙;李朝红;徐光兴;;带肋钢筋与混凝土粘结性能的细观数值模拟[J];西南交通大学学报;2011年03期
相关博士学位论文 前10条
1 贺月香;土和冻土的动态力学性能及本构模型研究[D];北京理工大学;2014年
2 彭宁波;锚固岩质边坡地震动力响应及锚固机理研究[D];兰州大学;2014年
3 张益东;锚固复合承载体承载特性研究及在巷道锚杆支护设计中的应用[D];中国矿业大学;2013年
4 赵宇飞;加锚结构面剪切特性及锚固岩体综合力学模型研究[D];中国水利水电科学研究院;2013年
5 郑西贵;煤矿巷道锚杆锚索托锚力演化机理及围岩控制技术[D];中国矿业大学;2013年
6 叶根飞;岩土锚固荷载传递规律与锚固特性试验研究[D];西安科技大学;2012年
7 汪班桥;土层锚杆常见病害破坏机理及防治技术研究[D];长安大学;2010年
8 赵同彬;深部岩石蠕变特性试验及锚固围岩变形机理研究[D];山东科技大学;2009年
9 冀晓东;冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D];大连理工大学;2007年
10 朱训国;地下工程中注浆岩石锚杆锚固机理研究[D];大连理工大学;2007年
相关硕士学位论文 前10条
1 关键;岩石锚杆基础的应用与有限元分析[D];辽宁科技大学;2016年
2 王政;地下结构锚杆加固技术与静动力分析[D];河南科技大学;2015年
3 张文勇;岩石锚杆基础在风电基础工程中的应用与研究[D];湖南科技大学;2015年
4 王鹏飞;基于Drucker-Prager准则的PBX准静态变形与破坏研究[D];中国工程物理研究院;2015年
5 孙铭;钢筋混凝土粘结滑移本构试验研究及有限元分析[D];浙江大学;2015年
6 董方方;锚杆拉拔荷载传递规律及巷道支护参数优化研究[D];内蒙古科技大学;2014年
7 陈瑶;树脂锚杆锚固性能的力学分析[D];中国矿业大学;2014年
8 袁小平;基于细观力学的岩石弹塑性损伤模型研究[D];中国地质大学(北京);2012年
9 丁新新;钢筋与机制砂混凝土粘结性能试验研究及非线性数值模拟[D];华北水利水电学院;2012年
10 许刚刚;预应力岩石锚杆合理预张荷载确定方法研究[D];西安科技大学;2011年
,本文编号:2380157
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2380157.html