当前位置:主页 > 教育论文 > 师范教育论文 >

高校学生分层培养的统计分析模型

发布时间:2018-02-24 19:28

  本文关键词: 高校学生成绩 多元统计方法 聚类 回归分析 因子分析 出处:《重庆大学》2013年硕士论文 论文类型:学位论文


【摘要】:高校学生的毕业去向是学生和社会各界均非常关注的问题。学生毕业去向与高校的培养质量是密切相关的,学生的就业情况对学校的培养方案及教学质量具有重要的指导作用。论文以重庆市某高校的数学专业的学生就业情况为例,把学生的成绩与就业情况联系在一起,根据成绩将学生进行相应的分类,寻找每一类就业学生的学习成绩的特征,建立学生的特征与就业类型之间映射关系,学校可以根据学生的状况和社会的需求调整课程的设置,学时数的安排,教材内容的改革和教学方法的改进,构建学校对学生进行分层培养的一个动态系统,合理优化教育资源配置。引导学生朝着能发挥自己优势的方向发展,让优秀的人才更快更好的成长,实现菜单式的培养模式,增加高等教育培养模式中的柔性。 论文提出了一种基于多元统计分析的高校学生分层培养模型。根据学生的就业情况,以在校期间成绩为指标,采用层次聚类方法把学生分为三类(即读研学生、就业学生和肄业待业学生三个大类),得出三个大类学生的特征: 第一类(读研究生类):专业基础课和公共基础课有明显的优势,,这一部分学生要求教师在教学中善于提出问题,启发学生思考。主要是培养他们的创新思维,把他们培养成极具竞争优势的创新型人才。 第二类(就业学生类):这类学生是社会急需的实用型人才。这部分学生要求学校注重实践能力培养和应用创新能力训练,使得学生具有宽广的知识面,完备的知识框架和能够为社会解决实际问题的技能。 第三类(待业类或肄业类):这部分学生显示出来的特征是基础差,补考的科目比较多,虚度了大学阶段的大好光阴,在毕业的时候还有课程不过关,导致就业难。这部分学生要求学校需要付出更多的关心,及早做好后进生的转化工作,避免这类学生的出现。 论文对聚类结果中的第一类学生的考研入学成绩与本科的学习成绩做回归分析,筛选其中的变量,对筛选出来的变量做因子分析,确定对考研学生的教学培养方案;对第二类学生的就业情况与其本科的成绩做回归分析发现,他们的就业情况与成绩相关性不是很明显,与其他因素相关,如交际能力,动手能力等等,对这部分学生还应该加强综合素质教育。
[Abstract]:The direction of college students' graduation is a problem that students and all walks of life pay close attention to. The direction of students' graduation is closely related to the quality of education in colleges and universities. The employment situation of students plays an important role in guiding the training scheme and teaching quality of the school. This paper takes the employment situation of mathematics major in a university in Chongqing as an example to link the students' achievement with the employment situation. According to the results, the students are classified accordingly, the characteristics of each kind of employment students are found, and the mapping relationship between the students' characteristics and the types of employment is established. The school can adjust the curriculum according to the students' conditions and the needs of the society. The arrangement of school hours, the reform of teaching material content and the improvement of teaching methods, the establishment of a dynamic system of stratified cultivation of students in schools, the rational optimization of the allocation of educational resources, and the guidance of students to develop in a direction that can bring their own advantages into full play. Let the outstanding talents grow faster and better, realize the menu training mode, and increase the flexibility in the higher education training mode. This paper presents a hierarchical training model for college students based on multivariate statistical analysis. According to the employment situation of the students and taking the achievement in school as the index, the paper classifies the students into three categories (that is, graduate students) by hierarchical clustering method. There are three major categories of employed students and unemployed students, and the characteristics of the three major categories of students are obtained:. The first category (graduate students: professional basic courses and public basic courses have obvious advantages, this part of the students require teachers to be good at teaching questions, inspire students to think, mainly to cultivate their innovative thinking, Train them into innovative talents with competitive advantages. The second category (employed students): this kind of students are the practical talents urgently needed by the society. This group of students require schools to pay attention to the training of practical ability and the ability to apply innovation, so that the students have a wide range of knowledge. Complete knowledge framework and skills to solve practical problems for society. The third category (waiting or not studying): this group of students show the characteristics of poor foundation, more subjects in the supplementary examination, wasted good time in the university stage, and still fail the course at the time of graduation. This part of the students require schools to pay more attention to the transformation of backward students early to avoid the emergence of such students. In this paper, regression analysis is made on the first kind of students' entrance grades and undergraduate grades in the clustering results, the variables are screened, the selected variables are analyzed, and the teaching and training programs of the students are determined. The regression analysis between the employment situation of the second type students and their undergraduate achievement shows that the correlation between the employment situation and the achievement is not obvious, but is related to other factors, such as communication ability, hands-on ability and so on. This part of the students should also strengthen comprehensive quality education.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:G642.0

【参考文献】

相关期刊论文 前10条

1 周兴华;;基于主成分分析的中原城市群城市发展水平研究[J];重庆科技学院学报(社会科学版);2012年09期

2 陆梅芳;;高校学生成绩综合评价研究[J];池州学院学报;2010年03期

3 李庆东;聚类分析在股票分析中的应用[J];辽宁石油化工大学学报;2005年03期

4 柯冰,钱省三;聚类分析和因子分析在股票研究中的应用[J];上海理工大学学报;2002年04期

5 潘文皓;;基于SPSS的大学生综合测评成绩分析研究[J];吉林省教育学院学报;2010年09期

6 董晓萌;;高校学生成绩的综合评价法[J];价值工程;2011年33期

7 陆慧琴;高月红;;主成分聚类分析法在大学生综合测评中的应用[J];科技信息;2010年26期

8 李敏;何理;;聚类分析在证券投资基本分析中的应用[J];辽宁师范大学学报(自然科学版);2006年02期

9 戴凌霄;马英红;赵庆祯;;基于SPSS软件分析影响高中生学习成绩的各因素[J];信息技术与信息化;2006年03期

10 邓秀勤;聚类分析在股票市场板块分析中的应用[J];数理统计与管理;1999年05期



本文编号:1531430

资料下载
论文发表

本文链接:https://www.wllwen.com/jiaoyulunwen/shifanjiaoyulunwen/1531430.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4c25a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com