D公司运输方案优化研究
本文关键词:D公司运输方案优化研究 出处:《北京交通大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 运输方案优化 运输整合 车辆路径问题 改进的蚁群算法
【摘要】:目前,众多企业都致力于在物流环节找到新的利润增长点,对于运输方案的设计和优化也成为了降低物流成本、实现利润增长的重要目标。D公司是一家体育用品零售商,同时有合作的30家原材料厂和74家成品厂,在原材料和成品运输中,D公司目前的运输方案已经暴露出空载率高、运输批量和运输频率不合适等诸多问题,造成了运输成本的居高不下。为解决上述问题,本文提出对D公司的运输方案进行优化。首先,本文深入分析了 D公司的运输需求并描述了 D公司的运输方案现状,从而指出目前运输方案中存在空载率高和运输频率小、批量大的问题。其次,本文提出了一个D公司的运输优化方案,该方案将D公司目前各自独立的原材料和成品运输过程整合为去程运输原材料、回程运输成品的方式并调整了运输频率,同时通过对实际情况进行分析阐述了运输方案优化的原因和方案实施的可行性。再次,本文指出车辆行驶路线的确定为运输方案优化的重点,并分别在同时运输原材料和成品及只运输量差成品两个运输过程中建立了车辆路径模型,同时运输原材料和成品的车辆路径模型在传统的车辆路径模型的基础上将车辆行驶费用和车辆租金综合考虑作为目标,并根据原材料厂的可使用车辆数量添加了车辆数限制作为约束条件。然后,本文用MATLAB软件将非高峰期和高峰期情况下不同原材料厂和成品厂的数据代入模型进行求解,求解方法选用了改进的蚁群算法,该算法在传统蚁群算法的基础上改进了全局信息素更新规则,增加了局部信息素更新规则,提高了算法的全局搜索能力,使模型的求解结果更接近最优解。最后,本文根据求解结果确定了非高峰期和高峰期情况下的车辆行驶路线,根据成品厂的需求情况确定了车辆的装载方案,并选取空载率和库存水平两个指标对优化前后运输方案进行了对比,得出优化后运输方案的可行性和合理性。从结果上来看,本文通过对运输过程进行整合并设计新的车辆行驶路线极大降低了 D公司的车辆空载率,降低了运输成本。本文的运输优化方案优化了运输频率,解决了因原有的运输频率小、批量大而造成的成品厂库存水平高的问题,并且降低了原材料厂和D公司区域配送中心的库存水平,降低了各方的库存成本。同时,本文为D公司提出的运输优化方案对其他想进行运输方案优化的企业提供了参考和借鉴。
[Abstract]:At present, many enterprises are committed to find new profit growth point in the logistics chain, for the design and optimization of transportation scheme has become an important goal of reducing the logistics cost,.D company profit growth is a sporting goods retailer, and cooperation 30 raw materials factory and 74 products factory, in the raw materials and finished goods in transit, D's current transport scheme has exposed the load rate, transport volume and transport frequency is not suitable so many problems, caused the high transportation cost. To solve the above problems, this transport scheme of D's optimization. Firstly, this paper analyzes the D company's transport demand and describes the present situation of transportation scheme of D company, which pointed out that the existing transport scheme in high load rate and transport in low frequency, large quantities of the problem. Secondly, this paper puts forward the optimization of lost a D of the company The case, the program will D company currently separate raw materials and finished product transportation process integration to transport raw materials, finished products and adjust the way of return transportation transportation frequency, and expounds the feasibility of the implementation of the reasons and solutions of transportation planning optimization based on the actual situation analysis. Thirdly, this paper points out that the vehicle travel route. As a key transport optimization, and transportation in raw materials and finished products and transportation quantity difference finished two in the process of transportation established vehicle routing model, while the vehicle road transport of raw material and finished product size model in the traditional model of vehicle routing based on vehicle and vehicle rental fee considered as a target and, according to the quantity of raw material factory cars available add a limited number of vehicles as a constraint condition. Then, this paper used MATLAB software to non peak and peak period To solve the data into the model of different raw materials and finished products factory factory under the condition that the solution using improved ant colony algorithm, the algorithm based on traditional ant colony algorithm improves the global pheromone update rule, increase the update rules of local information, to improve the global search ability of the algorithm, the model result close to the optimal solution. Finally, according to the results to determine the non peak and peak under the condition of vehicle routes, according to the demand of product factory vehicle loading scheme was determined, compared and selected the load rate and inventory level two indexes before and after the optimization on the transportation plan, the feasibility of optimized transportation scheme and reasonable. As a result, through the integration of the transport process and design of the new vehicle route greatly reduces vehicle load D rate decreased The cost of transportation. The transportation optimized transportation frequency, solves the original frequency due to the transport of small, large quantities of products factory inventory levels caused by the problem of high and low material factory and D regional distribution center inventory levels, reduces the inventory cost. At the same time, provide a reference from the optimization program for the transport of D to optimize transportation program for other enterprises to.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F416.8;F252
【参考文献】
相关期刊论文 前10条
1 周晓玲;王震;肖文涛;;原油远洋拼船运输方案优化研究[J];中国石油大学学报(自然科学版);2016年02期
2 翁克瑞;诸克军;刘耕;;协同运输的路线整合问题研究[J];中国管理科学;2015年01期
3 葛显龙;辜羽洁;王伟鑫;;供应链环境下的库存与运输整合优化模型及算法[J];系统工程;2014年01期
4 陈迎欣;;基于改进蚁群算法的车辆路径优化问题研究[J];计算机应用研究;2012年06期
5 张建民;恰汗·合孜尔;高大利;;基于改进蚁群算法的物流配送路径问题研究[J];计算机工程与科学;2010年07期
6 刘冉;江志斌;陈峰;刘黎明;刘树军;刘天堂;;多车场满载协同运输问题模型与算法[J];上海交通大学学报;2009年03期
7 陈相东;;多种运输方式的组合优化模型及其求解[J];天津理工大学学报;2008年04期
8 梁雪玲;靳文舟;;运输方式选择的模型及算法研究[J];交通与计算机;2008年03期
9 郭倩倩;黄天民;施继忠;胡明俊;;一种改进的蚁群算法及其在旅行商问题中的应用[J];西南民族大学学报(自然科学版);2006年06期
10 乐逸祥;周磊山;乐群星;孙琦;;求解物流配送路径优化问题的一种改进蚁群算法[J];计算机集成制造系统;2006年06期
相关硕士学位论文 前7条
1 陈静;以运输成本最低为目标的同时取送货车辆路径优化研究[D];吉林大学;2016年
2 彭曦;回收需求随机的带时间窗逆向物流车辆路径问题研究[D];武汉理工大学;2013年
3 石华t@;改进的蚁群算法在实际VRP中的应用研究[D];山东大学;2012年
4 王靓靓;国际工程物流项目中运输方案优化研究[D];大连海事大学;2010年
5 侯栋梁;大件货物运输方案制定研究[D];西南交通大学;2009年
6 吴强;大件货物加氢反应器运输方案设计与实施[D];大连海事大学;2006年
7 孟馨;水利水电工程物流分析与控制研究[D];天津大学;2003年
,本文编号:1372768
本文链接:https://www.wllwen.com/jingjifazhanlunwen/1372768.html