当前位置:主页 > 经济论文 > 经济发展论文 >

安徽省劳动力供求预测分析

发布时间:2018-03-04 00:22

  本文选题:劳动力供给 切入点:灰色GM(1 出处:《安徽大学》2017年硕士论文 论文类型:学位论文


【摘要】:据统计显示,安徽省于1998年进入老龄化社会,随着时间的推移,老龄化程度不断加深,而与之对应的则是劳动力人口的减少,调查显示安徽省劳动力人口比重从2010年开始下降,由2010年的67.21%下降2014年的63.3%,其中青壮年劳动力供给数量下降尤为明显,16-35岁年龄段人口每年减少20-30万人。所以做好对劳动力供求的预测,提前制定相应的政策来应对接踵而来的各项问题现在显得尤为重要。本文首先对安徽劳动力供给和需求现状进行了描述分析,从劳动力供给的角度来看,安徽省总人口呈缓慢上升之态,人口出现老龄化趋势,0-14岁年龄组的人口比重下降比较快,从2000年的25.49下降到2015年的18.21%,减少了将近个7百分点。15-64岁年龄组人口比重占70%左右并且出现上升趋势,随着安徽省人口老龄化的加重,适龄劳动人口的数量增长将逐渐减慢。人口教育程度稳步提高,但受高等教育人群的比重仍较低劳动者整体文化水平偏低,教育水平仍较为落后,劳动者素质总体偏低,以小学和初中文化程度为主,高学历人才匮乏。从劳动力需求的角度来看,安徽省对劳动力需求平稳增长。乡村从业人员占比最高,尤其是在2000-2005年间,乡村从业人员总数在占据了从业人员总数八成以上,随着城镇化的进程,乡村从业人员比例呈现下滑趋势,2000年为81.8%,2015年下降为70.2%,第二产业和第三产业人口数量逐渐上升,第一产业就业人口数量逐渐下降,就业人口从第一产业逐渐向第二产业和第三产业转移,交通运输、仓储和邮政业发展迅速。本文预测了 2016-2025年安徽省劳动力供给和需求数量。预测劳动力供给时,本文采用了灰色BP神经网络算法,首先运用灰色预测算法建立GM(1,1)预测模型对常住人口、出生率、死亡率、人口流入、人口流出等5个影响劳动力人口的因素进行预测,然后结合BP神经网络算法加入5个劳动力影响因素进行训练进而预测出未来劳动力人口的发展数据。预测劳动力需求时,先根据2006-2015年的数据建立劳动力需求关于地区总量、资本投入和技术进步的多元线性回归模型,再利用灰色预测算法建立GM(1,1)预测模型,预测出未来10年地区总量、资本投入和技术进的数据;代入回归模型得到2016-2025年安徽省劳动力需求,在上述分析的基础上,本文预测出安徽省未来10年的劳动力供求缺口,发现未来十年安徽省劳动力供不应求现象明显。根据上述分析结果,本文提出了积极响应国家二胎政策、提高劳动者素质、完善劳动力的就业服务体系、完善用工环境,提高工资待遇和推进多层次的专业教育等五个方面的政策建议。
[Abstract]:According to statistics, Anhui Province entered an aging society in 1998. With the passage of time, the degree of aging has been deepening, and corresponding to the decrease of the labor force population, the survey shows that the proportion of the labor force population in Anhui Province has been declining since 2010. From 67.21% in 2010 to 63.3 in 2014, the decline in the supply of labor in the young and middle-aged is especially marked by a reduction of 20-300, 000 people per year in the 16-35 age group. So make a good forecast of the supply and demand of the labor force. It is particularly important to formulate corresponding policies in advance to deal with the problems that follow. This paper first describes and analyzes the current situation of labor supply and demand in Anhui Province, and looks at it from the point of view of labor supply. The total population of Anhui Province is rising slowly, and the proportion of the population in the 0-14 age group decreases rapidly. From 25.49 on 2000 to 18.21 on 2015, the proportion of the population in the age group of 15 to 64 years decreased by nearly 7 percentage points, accounting for about 70% and showing an upward trend. With the population aging in Anhui Province, The increase in the number of the working-age population will gradually slow down. The education level of the population will increase steadily, but the proportion of the population receiving higher education is still relatively low, the overall cultural level of the workers is still low, the education level is still relatively backward, and the overall quality of the workers is on the low side. Primary and junior high school education is the main factor, and highly educated talents are scarce. From the point of view of labor demand, the demand for labor in Anhui Province has grown steadily. Rural employees account for the highest proportion, especially between 2000 and 2005. The total number of rural employees accounts for more than 80% of the total number of employees. With the process of urbanization, the proportion of rural employees shows a downward trend, from 81.8 in 2000 to 70.2 in 2015. The population of the secondary and tertiary industries has gradually increased. The number of employed people in the primary industry has gradually decreased, and the employed population has gradually shifted from the primary industry to the secondary industry and the tertiary industry. The storage and post industry is developing rapidly. This paper forecasts the quantity of labor supply and demand in Anhui Province from 2016 to 2025. When forecasting labor supply, the paper adopts the grey BP neural network algorithm. First of all, the grey prediction algorithm is used to establish the GM1 / 1) forecasting model to predict the five factors that affect the labor force population, such as resident population, birth rate, mortality rate, population inflow and population outflow. Then the BP neural network algorithm is combined with five labor force influencing factors to train and predict the development data of the future labor force population. When forecasting the labor demand, first, according to the data from 2006 to 2015, the total amount of labor demand in the region is established. The multivariate linear regression model of capital investment and technological progress, and the GM1 / 1) prediction model based on grey prediction algorithm are used to predict the regional total amount, capital investment and technological advance data in the next 10 years. The labor demand of Anhui Province in 2016-2025 is obtained by means of regression model. Based on the above analysis, this paper predicts the shortage of labor supply and demand in Anhui Province in the next 10 years. It is found that the supply of labor force in Anhui Province in the next ten years is obviously short of supply. According to the above analysis results, this paper puts forward a positive response to the national policy of two births, improving the quality of workers, perfecting the employment service system of the labor force, and perfecting the employment environment. Raise salary and promote multi-level professional education and other five aspects of policy recommendations.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F249.27

【参考文献】

相关期刊论文 前10条

1 吴启凡;;多元回归与年龄移算法在老龄人口研究中的整合分析[J];西北人口;2015年04期

2 耿德伟;;改革开放以来的中国劳动力投入增长及未来发展趋势[J];发展研究;2014年09期

3 高玉明;张仁津;;基于遗传算法和BP神经网络的房价预测分析[J];计算机工程;2014年04期

4 童玉芬;;人口老龄化过程中我国劳动力供给变化特点及面临的挑战[J];人口研究;2014年02期

5 李刚;;劳动力短缺的多维解析与破解路径[J];经济学家;2014年03期

6 石荣;;基于灰色关联分析的就业影响因素分析[J];经济研究导刊;2013年23期

7 李宾;马九杰;;劳动力供给保障水平、“民工荒”成因与宏观经济影响[J];经济与管理研究;2013年07期

8 梁颖;陈佳鹏;;日本失去的二十年——基于中日人口红利比较的视角[J];人口学刊;2013年04期

9 蒋远营;;基于年龄移算法的人口预测[J];统计与决策;2012年13期

10 邓W,

本文编号:1563345


资料下载
论文发表

本文链接:https://www.wllwen.com/jingjifazhanlunwen/1563345.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fdde8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com