基于改进KNN算法的二手房评估
[Abstract]:Traditional methods of house evaluation, such as income method, cost method and market comparison method, have many problems, such as high cost, low efficiency, poor precision and so on. Based on the research of KNN algorithm and second-hand house evaluation, this paper analyzes the characteristics of KNN algorithm and the feasibility of applying the algorithm to second-hand housing evaluation. The key data in second-hand housing information is easy to be numerical and standardized, and the KNN algorithm is feasible in the model, and the filtered sample set size controllable KNN algorithm also has a large space in time complexity optimization, and is feasible in computing efficiency. The KNN algorithm is easy to realize for the second-hand housing information, which has a clear structure, and the cost is lower, so it is economically feasible. This paper analyzes the classification technology and regression technology in data mining, then selects KNN algorithm as the core technology to evaluate second-hand housing, and realizes a B / S (browser / Server mode) evaluation application. Give target users with second-hand housing assessment needs a quick way to get results. Through research and analysis, it is found that the classical KNN algorithm has the advantages of high precision, insensitivity to the noise in the sample set, and the disadvantages of hard to select k value, high time complexity and large influence of sample balance. For the advantages of the algorithm, the method of weighted result set is used to further improve the accuracy of the algorithm, and the method of de-duplication and standardization is used to reduce the noise, and for the shortcomings of the algorithm, the value of k is selected by the method of multiple tests. The time complexity is reduced by using TopK algorithm and multi-thread concurrency, and the sample balance is stabilized by classifying the data in the data acquisition stage. In order to verify the practicability of the improved KNN algorithm, this algorithm is used to analyze some second-hand housing data in Harbin. Through the preprocessing of the data and the realization of the improved KNN algorithm, the evaluation results of the second-hand house are given. For the target users such as second-hand house owners and intermediaries, the B / S application of the improved KNN algorithm for second-hand housing evaluation has the advantages of faster calculation speed and friendly interface than the traditional second-hand housing evaluation method. Meet the needs of the target users well.
【学位授予单位】:哈尔滨商业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F299.23;TP311.13
【参考文献】
相关期刊论文 前10条
1 曲卫东;於洋;;基于蒙特卡洛模拟假设开发法对土地出让底价评估的改进[J];中国土地科学;2014年11期
2 王丽英;;房地产估价主观风险分析[J];中国集体经济;2012年13期
3 张楠;苗夺谦;岳晓冬;;区间值信息系统的知识约简[J];计算机研究与发展;2010年08期
4 张孝飞;黄河燕;;一种采用聚类技术改进的KNN文本分类方法[J];模式识别与人工智能;2009年06期
5 项勇;杨玉静;舒小兰;;基于特征价格的城市交通对房价影响分析[J];技术经济与管理研究;2009年06期
6 朱明旱;罗大庸;易励群;;一种序列的加权kNN分类方法[J];电子学报;2009年11期
7 苏映雪;付耀文;;基于KNN算法的组合式非搜索特征选择算法[J];计算机工程;2007年18期
8 王晓晔,王正欧;K-最近邻分类技术的改进算法[J];电子与信息学报;2005年03期
9 陈莉,焦李成;Internet/Web数据挖掘研究现状及最新进展[J];西安电子科技大学学报;2001年01期
10 陈莉;数据库中的知识发现[J];西北大学学报(自然科学版);1999年01期
相关会议论文 前1条
1 郑思齐;刘洪玉;;市场比较法中因素调整过程的改进——归一法与Hedonic模型法[A];2003中国房地产估价学术研讨会论文集[C];2003年
相关硕士学位论文 前3条
1 张静;基于主成分分析的房地产估价方法研究[D];河北工业大学;2007年
2 张威;灰色理论和模糊集在房地产估价中的综合应用研究[D];合肥工业大学;2006年
3 沈良峰;房地产估价基本方法参数的改进研究[D];中南大学;2003年
,本文编号:2131706
本文链接:https://www.wllwen.com/jingjifazhanlunwen/2131706.html