相依风险及平衡损失函数下的信度理论
[Abstract]:In insurance practice, an important task is to determine sufficient premiums to cope with risks. So far, there have been many methods to determine the insurance price. Among them, the reliability determination method is a widely accepted and important technology. It predicts the future claims of the risk set through the past claim data of the risk set. Now in the early twentieth century, until the 1960s, Buhlmann model has laid the foundation of modern reliability theory. It solves the problem of no distribution by using the least square method to determine the premium of reliability, and expresses it as the weighted average of individual average and collective average. However, in practice, the assumption of risk independence in Biihlmann model is not necessarily satisfied. Risk-related situations often occur. Biihlmann model with risk-related structure is gradually taken seriously.
In classical decision theory, the loss function only focuses on the accuracy of estimation, but the fitness is also an important criterion. Zellner first introduced the balance loss function which reflects the accuracy and fitness in the general linear model, and the reliability determination method under the balance loss function has also been studied in recent years. The reliability model under premium principle is also studied continuously, mainly because the weighted loss function can reduce the negative security load in pure premium principle, such as Esscher premium principle, adjusting premium principle and so on.
This paper mainly studies two parts: one is the study of the reliability model which is different from the classical reliability model in risk structure; the other is the study of the reliability model which is different from the loss function in the classical reliability model.
The first part of this paper is studied in the second chapter. The risk-dependent and time-dependent reliability model is extended to the risk-dependent and time-dependent reliability model. The relationship between orthogonal projection and reliability estimation and the reliability estimation formula expressed by orthogonal projection are given. Homogeneous and inhomogeneous reliability estimates of risk premiums in time-dependent Buhlmann and Buhlmann-Straub models are given. Finally, reliability premiums with common effect risk structures and risk-related structures are deduced.
In the second part, we study the reliability premium problem when the quadratic loss function in the classical reliability model is modified into the balanced loss function and the weighted balanced loss function. The general reliability premium expression, homogeneous and inhomogeneous reliability premiums with common effect risk structure are studied emphatically, and the estimation of relevant parameters in the reliability formula is given. Finally, the reliability premium of exponential premium principle under the equilibrium loss function is discussed.
In Chapter 4, firstly, the linear regression reliability premium with risk-dependent structure under the balanced loss function is given; secondly, the reliability premium when the target estimator in the balanced loss function takes a special estimate is obtained; finally, the regression confidence under two special risk structures, i.e. risk equivalence correlation and common risk, is discussed. Degree model.
In Chapter 5, considering that the loss function is often responsible for the loss of security load, the quadratic loss function in the classical reliability model is replaced by the weighted balanced quadratic loss function. In this paper, we discuss the consistency of the reliability estimates. We study the premium problem under the general equilibrium loss function L_, _, _0 (theta, delta) = __ (delta 0, delta) + (1-_) Rho (theta, delta). Finally, we obtain the reliability premium under the equilibrium entropy loss function and the equilibrium Linex loss function by Taylor expansion.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:F840.3;O212.1
【共引文献】
相关期刊论文 前10条
1 康会光;一类单边截断型分布族参数的经验Bayes估计[J];安阳师范学院学报;2001年02期
2 康会光,师义民;LINEX损失下Pareto分布族参数的经验Bayes估计[J];纯粹数学与应用数学;2001年02期
3 康会光;师义民;柴建;黄藏红;;Linex损失及PA样本下单边截断型分布族参数函数的EB估计[J];纯粹数学与应用数学;2008年02期
4 师义民;双边截断型分布族参数的经验Bayes估计[J];高校应用数学学报A辑(中文版);2000年04期
5 腾叶;吴黎军;;指数保费原理下的双相依信度保费[J];高校应用数学学报A辑;2013年04期
6 谢远涛;杨娟;;基于操作时间和广义线性混合模型的准备金评估技术研究[J];保险研究;2014年03期
7 李新鹏;努尔古丽·艾力;吴黎军;;LINEX损失函数下具有时间变化效应的信度模型[J];重庆理工大学学报(自然科学);2014年06期
8 王剑;刘次华;彭家龙;;平衡损失下正态总体均值的序贯估计[J];湖北工业大学学报;2007年01期
9 温利民;吴贤毅;;指数保费原理下的经验厘定[J];中国科学:数学;2011年10期
10 黄藏红;王华敏;;Linex损失及NA样本下单边截断型分布族参数函数的EB估计[J];洛阳师范学院学报;2008年05期
相关博士学位论文 前5条
1 刘湘蓉;统计决策观点下线性模型参数估计优良性研究[D];华东师范大学;2006年
2 温利民;风险保费的信度估计及其统计推断[D];华东师范大学;2010年
3 张尚立;不等式约束线性模型的可容许性估计理论[D];北京交通大学;2012年
4 杨磊;贝叶斯非参数统计中的先验的估计[D];华东师范大学;2014年
5 彭秀云;基于广义逐次截尾数据的逆Weibull分布可靠性推断[D];内蒙古工业大学;2013年
相关硕士学位论文 前10条
1 雷静;平衡损失函数下信度保费的相合性研究[D];吉林大学;2011年
2 康会光;经验Bayes统计分析及其应用的研究[D];西北工业大学;2001年
3 许勇;NA样本情形下经验Bayes统计推断及其应用的研究[D];西北工业大学;2002年
4 宁建辉;分布函数的优良估计问题[D];华中师范大学;2005年
5 潘茂林;经验费率的相合性[D];华东师范大学;2007年
6 李树祥;经验Bayes估计中的若干问题[D];西北大学;2007年
7 洪乐;非对称损失函数下的信度保费[D];吉林大学;2008年
8 王学敏;Linex损失下Burr分布参数的Bayes估计[D];华中师范大学;2008年
9 凌光;平衡损失下线性模型的参数估计[D];华中科技大学;2007年
10 林霞;广义加权平衡损失函数下的稳健Bayes保费[D];华东师范大学;2009年
,本文编号:2247110
本文链接:https://www.wllwen.com/jingjilunwen/bxjjlw/2247110.html