一种有效缓解数据稀疏问题的协同过滤推荐算法
本文选题:电子商务 + 推荐系统 ; 参考:《现代情报》2016年03期
【摘要】:传统协同过滤推荐算法依据共同评分项目计算用户相似度,进而产生推荐项目。然而,随着用户和商品数量的不断增加,用户共同评分的项目会越来越少,甚至没有,因此传统协同过滤推荐算法对用户之间相似度的衡量将会越来越不准确,从而影响推荐系统的性能。针对这一问题,本文对用户相似度的计算方法进行了改进,提出直接相似度和间接相似度的概念,同时引入关键人物权重,进一步提高推荐系统的准确性。
[Abstract]:The traditional collaborative filtering recommendation algorithm calculates user similarity according to common score items, and then produces recommendation items. However, with the increasing number of users and products, the number of items that users score together will be less and less, so the traditional collaborative filtering recommendation algorithm will be more and more inaccurate to measure the similarity between users. This affects the performance of the recommendation system. To solve this problem, this paper improves the calculation method of user similarity, puts forward the concepts of direct similarity and indirect similarity, and introduces the weight of key person to further improve the accuracy of recommendation system.
【作者单位】: 河北农业大学信息科学与技术学院;
【基金】:保定市科学技术研究与发展指导计划项目“基于协同过滤的农业信息推荐系统的研究与开发”(项目编号:14ZN019);“农网中工控网络信息安全攻击监测方法的研究”(项目编号:14ZS005) 河北农业大学校基金“基于智能手机的三农科技信息服务体系的关键技术研究”(项目编号:LG201308)
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期
2 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期
3 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期
4 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期
5 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期
6 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期
7 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期
8 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期
9 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期
10 郑婕;鲍海琴;;基于协同过滤推荐技术的个性化网络教学平台研究[J];科技风;2012年06期
相关会议论文 前10条
1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年
5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年
8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年
相关博士学位论文 前10条
1 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年
2 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年
3 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年
4 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年
5 高e,
本文编号:2088098
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2088098.html