基于Kafka的大规模流数据分布式缓存与分析平台
[Abstract]:In recent years, with the continuous development of information technology and Internet applications, the global data volume is also explosive growth, the big data era is coming. This will not only bring about great changes in the field of scientific research, but will also have a profound impact on all aspects of our lives in the future. At present, in the field of big data analysis and computing, the distributed cluster architecture has been applied more and more widely because of its low cost, high computing power and good scalability. At the same time, the data structures calculated and analyzed in the distributed cluster architecture are more and more diversified. In recent years, the applications of electronic commerce, Internet of things, Internet of Finance and so on have been continuously developed. In most distributed clusters, there are dynamic stream data transmitted by monitoring terminal and runtime log files generated by the system at the same time. In this case, due to different characteristics of the data suitable for analysis algorithms and calculation methods are different, such as the flow of data processing process for real-time and topology diversity requirements, Requirements of system throughput and resource utilization during mass processing of large-scale data. However, the existing mainstream distributed cluster systems are generally suitable for the analysis of a specific data, such as Hadoop [19] [21] Storm [22] and S4 [23], but can not adapt to the coexistence of many types of data structures. In this paper, a kafka-based distributed cache and analysis platform for large-scale stream data is proposed. The platform is designed to organize and cache large-scale stream data input from the system. The processing units of on-line stream data processing and off-line batch processing are designed, and the analysis and operation are carried out according to different data types. The characteristics of the cache and analysis platform are summarized, which are divided into the following aspects: (1) the distributed message system is used as the cache of large-scale stream data. It improves the adaptability of the platform to the sudden change of the data input data from the dynamic flow. (2) the on-line real-time processing unit and the off-line batch processing unit are designed and implemented to process the data with different characteristics in the cluster, respectively. In order to meet the requirements of different types of data for real-time computing and system throughput. (3) the whole platform adopts centralized management mode, different modules, different processing unit node information synchronization to the management module, In order to realize the global consistency of the platform node information. This paper introduces the overall architecture of the platform in detail. The system is divided into three parts: cache subscription, online real-time processing and system management. Based on this design, the distributed cache and analysis platform model of large scale stream data based on kafka is implemented. Finally, the usability, extensibility and efficiency of the platform are verified. Through the design and implementation of the platform, this paper hopes to provide new ideas and methods for the construction of distributed computing clusters and large-scale data processing. It is also hoped that through further efforts, the platform model can be improved and used in real life, production, and research process.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13
【相似文献】
相关期刊论文 前10条
1 金澈清,钱卫宁,周傲英;流数据分析与管理综述[J];软件学报;2004年08期
2 聂国梁;卢正鼎;;流数据实时近似求和的算法研究[J];小型微型计算机系统;2005年10期
3 李卫民;于守健;骆轶姝;乐嘉锦;;流数据管理的降载技术:研究进展[J];计算机科学;2007年06期
4 李子杰;郑诚;;流数据和传统数据存储及管理方法比较研究[J];计算机技术与发展;2009年04期
5 潘静;于宏伟;;流数据管理降载技术研究综述[J];中国管理信息化;2009年21期
6 邹永贵;龚海平;夏英;宋强;;一种面向流数据频繁项挖掘的降载策略[J];计算机应用研究;2011年04期
7 聂国梁;卢正鼎;聂国栋;;流数据近似统计算法研究[J];计算机科学;2005年04期
8 魏晶晶;金培权;龚育昌;岳丽华;;基于流数据的大对象数据缓冲机制[J];计算机工程;2006年11期
9 杨立;;基于权重的流数据频繁项挖掘算法的应用[J];微型机与应用;2011年02期
10 尹为;张成虎;杨彬;;基于流数据频繁项挖掘的可疑金融交易识别研究[J];西安交通大学学报(社会科学版);2011年05期
相关会议论文 前3条
1 刘正涛;毛宇光;吴庄;;一种新的流数据模型及其扩展[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 姚春芬;陈红;;分布偏斜的流数据上的一种直方图维护算法[A];第二十三届中国数据库学术会议论文集(技术报告篇)[C];2006年
3 孙焕良;赵法信;鲍玉斌;于戈;王大玲;;CD-Stream——一种基于空间划分的流数据密度聚类算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
相关博士学位论文 前6条
1 丁智国;流数据在线异常检测方法研究[D];上海大学;2015年
2 聂国梁;流数据统计算法研究[D];华中科技大学;2006年
3 刘建伟;流数据查询系统结构及模式查询算法的研究[D];东华大学;2005年
4 李卫民;流数据查询算法若干关键技术研究[D];东华大学;2008年
5 屠莉;流数据的频繁项挖掘及聚类的关键技术研究[D];南京航空航天大学;2009年
6 陈筠翰;车载网络的若干关键技术研究[D];吉林大学;2014年
相关硕士学位论文 前10条
1 孔祥佳;基于海洋平台监测的流数据管理研究[D];大连理工大学;2015年
2 王晨阳;支持位置谓词的XML流数据查询技术[D];北京工业大学;2015年
3 王中义;基于动态支持度的流数据关联规则挖掘[D];哈尔滨工业大学;2014年
4 赵丹;面向流数据的不平衡样本分类研究[D];哈尔滨工业大学;2014年
5 冯学智;基于宏森林自动机的XML流数据查询技术[D];北京工业大学;2015年
6 徐雳雳;物流数据中的云聚类调度算法研究[D];南京邮电大学;2015年
7 肖丙贤;大规模流数据聚集查询服务的生成与优化[D];北方工业大学;2016年
8 刘晓斐;分布式流处理系统操作共享优化算法研究[D];吉林大学;2016年
9 张媛;基于弹性分布式数据集的流数据聚类分析[D];华东师范大学;2016年
10 王曾亦;基于内存计算的流数据处理在飞行大数据的研究与应用[D];电子科技大学;2016年
,本文编号:2173828
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2173828.html