吉林省A医药物流有限公司配送路径优化研究
发布时间:2018-05-23 16:40
本文选题:医药物流 + 车辆路径问题 ; 参考:《吉林大学》2014年硕士论文
【摘要】:由于近年来我国医药需求量的不断增长,医药物流行业面临着巨大的机遇与挑战,医药配送作为医药物流的关键环节也受到越来越多的关注。在医药物流企业竞争日益激烈的今天,如何能够构建高效的医药物流配送网络,设计合理的车辆配送路线,对于医药物流企业降低配送成本,节约配送时间,提高服务质量,增加运营效益具有重要的理论与现实意义。吉林省A医药物流有限公司作为一家配送网络覆盖全省95%的三级甲等医院、85%的二级甲等医院单位,单靠配送人员的个人经验来安排配送车辆的运输路径已经不能适应公司的发展需要,通过采用科学的方法合理安排配送车辆是企业现在面临的重要问题。 基于以上背景,本文以吉林省A医药物流有限公司为研究对象,结合国内外物流配送路径优化的研究成果,对公司的配送路径优化问题进行了研究。首先,本文简要介绍了医药物流和车辆路径问题的相关理论;其次,对公司的配送现状进行了分析,针对其车辆路径选择不科学的问题建立了起讫点相同的单车场、非满载、有时间窗约束的车辆路径优化问题模型,该模型以运输成本最小为优化目标,以客户需求量、服务时间要求和配送车辆的容量为约束条件。再次,通过对各种算法原理、特点、操作步骤等内容的分析比较,确定利用改进节约法对具体模型进行求解。最后,,利用MATLAB软件工具对基于改进节约算法的公司长春地区的配送线路进行优化求解,得出了最优的车辆配送线路。通过对优化前后线路选择方案的比较,发现优化后的方案能够减少配送距离和节约配送时间,在一定程度上提高企业的经济效益。
[Abstract]:Due to the increasing demand for medicine in recent years, the pharmaceutical logistics industry is facing enormous opportunities and challenges. As a key link of pharmaceutical logistics, medical distribution has been paid more and more attention. In today's increasingly competitive pharmaceutical logistics enterprises, how to build an efficient medical logistics distribution network, design a reasonable vehicle distribution route, for pharmaceutical logistics enterprises to reduce distribution costs, save distribution time, improve service quality, Increasing operational efficiency has important theoretical and practical significance. Jilin Province A Pharmaceutical Logistics Co., Ltd., as a distribution network covering 95% of the province's Grade 3A hospitals, 85% of the second-class first class hospital units, Relying on the personal experience of the distribution personnel to arrange the transportation path of the distribution vehicles can not meet the needs of the development of the company. It is an important problem for enterprises to arrange the distribution vehicles reasonably by adopting scientific methods. Based on the above background, this paper takes Jilin A Pharmaceutical Logistics Co., Ltd. as the research object, combined with the domestic and foreign logistics distribution route optimization research results, the distribution path optimization of the company was studied. Firstly, this paper briefly introduces the related theories of medical logistics and vehicle routing problem. Secondly, it analyzes the present distribution situation of the company, and establishes a bicycle yard with the same ending point, which is not full load, aiming at the unscientific choice of vehicle route. A vehicle path optimization model with time window constraints is presented. The model takes the minimum transportation cost as the optimization objective and takes customer demand, service time requirements and the capacity of distribution vehicles as constraints. Thirdly, by analyzing and comparing the principles, characteristics and operation steps of various algorithms, it is determined to use the improved saving method to solve the specific model. Finally, the MATLAB software tool is used to optimize the distribution line of Changchun area based on the improved saving algorithm, and the optimal vehicle distribution line is obtained. By comparing the route selection schemes before and after the optimization, it is found that the optimized scheme can reduce the distribution distance and save the distribution time, and to a certain extent improve the economic benefits of enterprises.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F426.72;F252;TP301.6
【参考文献】
相关期刊论文 前10条
1 崔宏志;龚加安;;带时间窗车辆路径问题的改进节约算法[J];纯粹数学与应用数学;2011年05期
2 郑国华;周小强;张力敏;;基于时间窗的城市医药品动态配送路径优化模型与算法[J];铁道科学与工程学报;2011年04期
3 翟运开;;第三方医药物流企业的服务创新动力与路径研究[J];当代经济管理;2009年10期
4 周延波;光昕;;我国连锁零售业物流配送的现状与对策分析——从沃尔玛物流配送中心的成功经验说起[J];对外经贸实务;2011年09期
5 陈建军;;蚁群算法在物流配送路径优化中的研究[J];计算机仿真;2011年02期
6 肖晓伟;肖迪;林锦国;肖玉峰;;多目标优化问题的研究概述[J];计算机应用研究;2011年03期
7 祁文祥;陆志强;孙小明;;带软时间窗的集货与送货多车辆路径问题节约算法[J];交通运输工程学报;2010年02期
8 黄天赦;叶春明;;基于混合粒子群算法的车辆路径优化问题研究[J];物流科技;2008年09期
9 杨冰芝;蔡咏蓓;;浅谈医药行业物流配送的问题与对策[J];物流科技;2009年03期
10 牛正乾;药物快批模式启示[J];中国牧业通讯;2005年10期
相关硕士学位论文 前1条
1 姜红;佳佰嘉连锁超市配送路线优化研究[D];中国海洋大学;2013年
本文编号:1925540
本文链接:https://www.wllwen.com/jingjilunwen/gongyejingjilunwen/1925540.html