基于半监督协同训练的文本情感分类研究
[Abstract]:With the rapid development of Web2.0, a large number of user-generated content (User Generated Content). Have been generated on the Internet. These user-generated content contains a large amount of useful emotional information, which is of great value to user decision-making and product improvement in enterprises. Therefore, how to use text emotion classification technology to mine the emotional information in the massive user-generated content has become a hot issue in academia and industry. Although the text affective classification method based on machine learning has achieved good results, it takes a lot of manpower to obtain labeled samples in practical applications. On the contrary, it is very easy to obtain unlabeled samples. Therefore, how to use a small number of labeled samples and a large number of unlabeled samples for text affective classification has become an urgent problem. In order to solve the problem of using unlabeled samples in text affective classification, semi-supervised cooperative training method is introduced into text affective classification. Firstly, this study analyzes the current situation of text affective classification and semi-supervised learning, and clarifies the current research issues and future research directions. Secondly, this study systematically studies the basic theories of text emotion classification and semi-supervised learning, analyzes the main tasks of text emotion classification, the main methods of text emotion classification, and the basic assumptions of semi-supervised learning. The effectiveness of semi-supervised learning and the main methods of semi-supervised learning and other basic theories. Then, based on this, the text emotion classification method based on semi-supervised cooperative training is studied. Considering that the current research has paid little attention to the influence of data distribution on text affective classification, this study constructs the text emotional classification model based on IDSSL under the condition of data distribution equilibrium from the two angles of data distribution equilibrium or not. And the text emotion classification model based on mixed strategy under the condition of unbalanced data distribution. Finally, the text emotion classification method based on semi-supervised cooperative training is introduced into the practical application, and two practical application scenarios, e-commerce and medical social media, are selected. The validity of two kinds of text emotion classification methods based on semi-supervised cooperative training is tested. The experimental results show that the proposed method has better results under different data distribution conditions, thus validating the effectiveness of the proposed method. Through this research, on the one hand, the semi-supervised learning method is introduced into the text affective classification problem, which expands the basic theory of text affective classification and semi-supervised learning. Based on this, a text emotion classification model based on semi-supervised cooperative training is constructed. On the other hand, the text emotion classification model based on semi-supervised cooperative training is applied to practical problems, which extends the application of text emotion classification and semi-supervised learning.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP391.1;F724.6
【相似文献】
相关期刊论文 前10条
1 刘敏;谢伙生;;一种基于旋转森林的集成协同训练算法[J];计算机工程与应用;2011年30期
2 胡菊花;姜远;周志华;;一种基于教学模型的协同训练方法[J];计算机研究与发展;2013年11期
3 尹哲峰;崔荣一;;协同训练在教师评估中的应用[J];延边大学学报(自然科学版);2009年02期
4 武永成;;一种基于分类置信度差异性的协同训练算法[J];湖北民族学院学报(自然科学版);2013年01期
5 徐飞裕;徐荣聪;;基于密度敏感距离的协同训练算法[J];计算机应用与软件;2011年09期
6 马蕾;汪西莉;;基于支持向量机协同训练的半监督回归[J];计算机工程与应用;2011年03期
7 詹永照;陈亚必;;具有噪声过滤功能的协同训练半监督主动学习算法[J];模式识别与人工智能;2009年05期
8 谢伙生;刘敏;;一种基于主动学习的集成协同训练算法[J];山东大学学报(工学版);2012年03期
9 李广水;宋丁全;郑滔;李杨;苏继申;;协同训练支持向量机对遥感影像的分类研究[J];计算机工程与应用;2009年29期
10 谢科;;融合协同训练和两层主动学习策略的SVM分类方法[J];湖南师范大学自然科学学报;2014年01期
相关重要报纸文章 前10条
1 文雅 丁猛 王方靖;某部多法并举解决协同训练难题[N];战士报;2008年
2 张新兵 唐廷刚 赵荣;兵种专业“结亲”夯实协同训练基础[N];中国国防报;2009年
3 记者 李学勇 特约记者 代宗锋;赴远海开展协同训练[N];解放军报;2010年
4 杨先富、胡金宝、车益洪;打破建制 协同训练[N];战士报;2012年
5 陈振东 李东生;紧贴使命任务要求砥砺精兵[N];解放军报;2009年
6 王小兴、杨志;总装某测试站协同训练提升试验能力[N];解放军报;2006年
7 苏俊杰、特约通讯员 王宇;一批协同训练课目成重点[N];中国国防报;2006年
8 彭兵根 记者 刘建伟;训练资源重点投向关键节点[N];解放军报;2010年
9 杨申勇 特约记者 唐青松;指挥程序一个不简 “战斗”全程模拟实战[N];战士报;2007年
10 高志群 成立 钱英新;加强科技动员力量培训[N];中国国防报;2010年
相关硕士学位论文 前3条
1 邹细涛;基于样本去噪的协同训练算法研究[D];西南大学;2015年
2 李宁宁;基于半监督协同训练的文本情感分类研究[D];合肥工业大学;2015年
3 魏辉;飞机与船舶协同训练RTI仿真平台的设计与实现[D];沈阳航空航天大学;2013年
,本文编号:2426492
本文链接:https://www.wllwen.com/jingjilunwen/guojimaoyilunwen/2426492.html