当前位置:主页 > 经济论文 > 建筑经济论文 >

智能楼宇VAV变风量空调系统控制

发布时间:2018-01-13 21:08

  本文关键词:智能楼宇VAV变风量空调系统控制 出处:《天津大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: 智能建筑 VAV 空调系统 神经网络 PID控制 解耦控制


【摘要】:近年来,我国的智能建筑发展迅猛,但随之而带来的巨大能源消耗问题已经开始引发关注。空调系统作为智能建筑的重要组成部分,也是其能耗的重要来源之一。在全球环境污染和能源危机的环境下,如何实现空调的节能,降低污染,已成为急待研究的课题。因此在要求开源节流的今天,提高设备及系统效能是最易实现的方式。而VAV(Variable Air Volume,变风量)空调系统正以其舒适、节能和极大的灵活性开始被广泛的应用于空调系统内,并逐步成为空调系统的主流。但VAV空调系统在我国的使用并未能达到预期效果,除了一部分工程方面以及使用者的背景和习惯有关外,由于VAV系统本身的强耦合性、多变量及非线性特征,容易造成系统运行的不稳定,在控制及管理上具有一定的难度,而被劣质了的控制效果,对整个系统的普及和应用造成了一定的影响。变风量空调系统属于全空气空调系统,具有节能和舒适的特点,但依旧需要合理有效的控制方法来保证其节能效果及运行的稳定。但由于其功能复杂,传统的控制方法和现代控制法都很难满足要求,这就需要借助现代的智能控制来实现系统最优化的运行。因此,引入先进的神经网络智能控制技术的课题就变得尤为重要而且更具有研究的价值。本文从工程实例的VAV项目展开研究,通过收集调试参数,针对现阶段的工程变风量系统的运行不稳定,VAV系统的多变耦合特性展开相关的研究,继而得出基于神经网络解耦的VAV系统控制方案。在解耦基础上更深层次地完成了神经元自适应PID控制器设计。同时,运用传统PID控制算法参数确定控制器权值的最初值。并通过MATLAB平台实施空调系统末端控制仿真研究。证实了该控制法有着显著的优越性,能满足节能和舒适度要求,具有良好控制效果。最后,从一个工程实例出发,介绍了一个厂商的VAV末端控制系统,并对实现方式进行探讨。
[Abstract]:In recent years, the intelligent building in our country has developed rapidly, but the huge energy consumption problem has started to arouse the attention. As an important part of the intelligent building, the air conditioning system is an important part of the intelligent building. In the environment of global environmental pollution and energy crisis, how to realize the energy saving of air conditioning and reduce pollution has become an urgent research topic. Improving the efficiency of equipment and systems is the easiest way to achieve this, and the VAV(Variable Air Volume) air conditioning system is being comfortable. Energy conservation and great flexibility began to be widely used in air conditioning systems, and gradually become the mainstream of air conditioning systems, but the use of VAV air conditioning system in China has not achieved the desired results. In addition to a part of the engineering and user background and habits of the VAV system due to its strong coupling, multivariable and nonlinear characteristics, it is easy to cause instability of the system. There are some difficulties in the control and management, but the poor control effect has a certain impact on the popularization and application of the whole system. The VAV air conditioning system belongs to the whole air conditioning system. It has the characteristics of energy saving and comfort, but it still needs reasonable and effective control methods to ensure its energy-saving effect and operation stability. However, because of its complex functions, the traditional control methods and modern control methods are difficult to meet the requirements. This requires the use of modern intelligent control to achieve the optimal operation of the system. The introduction of advanced neural network intelligent control technology has become particularly important and more valuable. This paper starts the research from the VAV project of engineering example and collects the debugging parameters. This paper focuses on the variable coupling characteristics of the VAV system under the unstable operation of the engineering VAV system at the present stage. Then the control scheme of VAV system based on neural network decoupling is obtained. The neural adaptive PID controller is designed on the basis of decoupling. At the same time. The parameters of the traditional PID control algorithm are used to determine the initial value of the controller weight, and the simulation research on the terminal control of the air conditioning system is carried out through the MATLAB platform. It is proved that the control method has obvious advantages. It can meet the requirements of energy saving and comfort, and has good control effect. Finally, starting from an engineering example, this paper introduces a manufacturer's VAV terminal control system, and discusses the realization method.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU855;TU831

【参考文献】

相关期刊论文 前8条

1 舒怀林,郭秀才;多变量强耦合时变系统的PID神经网络控制[J];工矿自动化;2003年05期

2 陈益武,缪小平,张虎;略论变风量空调系统[J];工程设计CAD与智能建筑;2001年07期

3 叶大法,杨国荣,胡仰耆;上海地区变风量空调系统工程调研与展望[J];暖通空调;2000年06期

4 舒怀林;PID神经元网络对强耦合带时延多变量系统的解耦控制[J];控制理论与应用;1998年06期

5 李克欣,叶大法,杨国荣,吴纯举,寿炜炜,张力;VAV 空调系统初探[J];暖通空调;1997年03期

6 刘国荣;多变量系统模糊解耦自适应控制[J];控制理论与应用;1997年02期

7 李明忠,王福利;基于递归神经网络的一类非线性无模型系统的自适应控制[J];控制与决策;1997年01期

8 王宁,涂健,陈锦江;自适应神经元控制系统的理论分析[J];华中理工大学学报;1993年04期

相关硕士学位论文 前1条

1 李小宇;基于神经网络的VAV空调控制系统设计[D];上海交通大学;2011年



本文编号:1420537

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1420537.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ea143***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com