大跨度钢屋盖施工全过程数值模拟与施工监控
发布时间:2018-03-17 13:09
本文选题:大跨度空间钢结构 切入点:数值模拟 出处:《武汉理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:近年来,大跨度空间结构的应用越来越广泛,国内外许多造型独特、结构复杂的大跨度空间建筑拔地而起,由于大跨度空间结构在整个施工过程中的受力非常复杂,需要对整个施工过程进行数值计算,并对施工过程进行安全控制。某体育馆跨度大、净空高、造型复杂,因此在施工过程中,存在一定的安全隐患,需对其施工过程进行分析和计算。体育馆钢屋盖是一个近似圆形的结构,由主次桁架拼接而成,部分桁架中心位置下部设有临时支撑。本文以该体育馆钢屋盖结构的施工过程为实际工程背景,对其安装过程和临时支撑拆除过程进行研究。本文的主要研究内容和结论如下:1、根据实际施工过程进行有限元数值计算,计算分析结果表明:钢屋盖临时支撑拆除以后,钢屋盖最大位移值为-28.4mm,最大等效应力为81.7MPa;临时支撑拆除前后,结构的应力值和变形值均维持在一个安全的范围内。2、对部分组成钢屋盖的关键桁架同一断面处上弦、下弦位置处的位移计算数据进行分析,对各个桁架的受力特点和规律进行分析,结果表明:整体钢屋盖以各桁架中心为对称位置,从桁架两端向桁架中心位置收缩,并伴随相应的扭转,整个钢屋盖的扭转量、东西方向变形量以及南北方向变形量均较小。3、根据数值计算的结果,制定详细的监测方案,并对整个施工过程的监测数据进行分析,在临时支撑卸载前后结构部分测点的应力和位移发生突变,大多数测点的应力和位移值在各自方向上均呈增大的趋势,其中最大应力监测值为-62.3MPa,最大竖向变形为-25mm,且维持在一个平稳的范围内。上弦杆主要承受压应力的影响,而腹杆的受力较为复杂,压应力和拉应力分布比较平衡,下弦杆主要承受拉应力的影响,临时支撑在整个施工过程中受压。4、对实际监测数据和理论数据进行对比分析,数据吻合较好。通过对以上内容的研究,体育馆钢屋盖在整个施工过程中,结构的变形远小于相关规范[46]要求的允许变形L/500(L=67.2m),结构实际的最大应力只有材料强度设计值的29%(Q235钢材强度设计值为215MPa)。结果表明体育馆钢屋盖的施工过程是合理有效的,且选用数值计算和实时监测的方法也是科学的,研究方法和结果可为类似工程的施工模拟和实时监测提供指导和参考。
[Abstract]:In recent years, the application of long-span spatial structure is more and more extensive. Many long-span spatial buildings with unique shape and complex structure have emerged at home and abroad, because the force of long-span spatial structure in the whole construction process is very complex. It is necessary to carry out numerical calculation and safety control of the whole construction process. A gymnasium has a large span, high clearance and complex shape, so there are some hidden dangers in the construction process. It is necessary to analyze and calculate the construction process. The steel roof of the gymnasium is an approximate circular structure, which is composed of the primary and secondary truss. There is temporary support in the lower part of the truss center. This paper takes the construction process of the steel roof structure of the gymnasium as the practical engineering background. The main contents and conclusions of this paper are as follows: 1. According to the actual construction process, the finite element numerical calculation is carried out. The results show that: after the steel roof temporary bracing is removed, The maximum displacement of steel roof is -28.4 mm and the maximum equivalent stress is 81.7 MPa. Before and after the temporary bracing is removed, the stress value and deformation value of the structure are maintained in a safe range of 0.2. The displacement calculation data at the lower chord position are analyzed, and the stress characteristics and rules of each truss are analyzed. The results show that the integral steel roof takes the center of each truss as the symmetrical position and shrinks from the two ends of the truss to the central position of the truss. With the corresponding torsion, the torsion of the whole steel roof, the deformation in the east and west direction and the deformation in the north and south direction are smaller. According to the results of numerical calculation, the detailed monitoring scheme is made, and the monitoring data of the whole construction process are analyzed. The stress and displacement of some measuring points of the structure changed suddenly before and after the temporary support was unloaded, and the stress and displacement values of most of the measured points showed an increasing trend in their respective directions. The maximum stress monitoring value is -62.3MPa, the maximum vertical deformation is -25mm, and the maximum vertical deformation is kept in a stable range. The upper chord mainly bears the influence of compressive stress, while the web bar is more complicated, and the distribution of compressive stress and tensile stress is more balanced. The lower chord is mainly affected by tensile stress, and the temporary support is under pressure during the whole construction process. Comparing and analyzing the actual monitoring data and the theoretical data, the data are in good agreement. The steel roof of the gymnasium was built during the whole construction. The deformation of the structure is much smaller than that of the allowable deformation L / 500 / L ~ (67.2mg) required by the relevant code [46], and the actual maximum stress of the structure is only 29m Q235 steel strength design value of the material strength design value. The results show that the construction process of the Gymnasium steel roof is reasonable and effective. It is also scientific to select the methods of numerical calculation and real-time monitoring. The research methods and results can provide guidance and reference for the construction simulation and real-time monitoring of similar projects.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU758.11
【参考文献】
相关期刊论文 前10条
1 李正华;邱小军;周元;孙锋;;大悬挑结构临时支撑卸载施工技术[J];建筑钢结构进展;2012年05期
2 李思璐;任珉;叶茂;吴玖荣;;广州国际体育演艺中心钢屋盖支撑卸载模拟分析及监控[J];广州大学学报(自然科学版);2011年04期
3 刘学武;郭彦林;郭宇飞;;千斤顶单元法在大跨度钢屋盖拆撑过程数值模拟中的应用[J];施工技术;2010年08期
4 钱稼茹;张微敬;赵作周;潘鹏;仲丛利;蒋千重;;北京大学体育馆钢屋盖施工模拟与监测[J];土木工程学报;2009年09期
5 娄峰;范晓伟;董苏洲;;惠州体育场钢结构罩棚卸载方案探讨[J];建筑结构;2009年S1期
6 刘学武;郭彦林;张庆林;刘禄宇;;CCTV新台址主楼施工过程结构内力和变形分析[J];工业建筑;2007年09期
7 郭彦林;刘学武;;大型复杂钢结构施工力学问题及分析方法[J];工业建筑;2007年09期
8 范重;王U,
本文编号:1624877
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1624877.html