曲杆单元铰接单层网壳弹塑性后屈曲分析
发布时间:2018-05-13 01:40
本文选题:曲杆单元 + 切线刚度矩阵 ; 参考:《建筑科学与工程学报》2016年06期
【摘要】:基于曲杆单元应力-弦长关系和矩阵微分理论,推导出曲杆单元在弹性与弹塑性状态下的切线刚度矩阵精确公式。研究构件取理想弹塑性材料,结构支座取固定铰支座和可动铰支座2种约束情况,考虑构件具有初弯曲,采用曲杆单元切线刚度矩阵和广义位移控制法,取结构自重为参考荷载,对节点铰接的K8大跨单层网壳结构进行弹塑性后屈曲分析。结果表明:曲杆单元切线刚度矩阵公式精确性很高,可有效用于大型铰接单层网壳弹塑性后屈曲分析。
[Abstract]:Based on the stress-chord length relation of curved bar element and the matrix differential theory, the exact formula of tangent stiffness matrix of curved bar element under elastic and elastic-plastic state is derived. In this paper, ideal elastic-plastic material is used for structural support and fixed hinge support and movable hinge support are used for structural support. Considering the initial bending of the member, tangent stiffness matrix of curved bar element and generalized displacement control method are adopted. Taking the deadweight of the structure as the reference load, the elastic-plastic post-buckling analysis of the single-layer latticed shell structure with long span K8 joints is carried out. The results show that the tangent stiffness matrix formula of curved bar element is highly accurate and can be effectively applied to the elastoplastic post-buckling analysis of large hinged single-layer latticed shells.
【作者单位】: 广州大学土木工程学院;
【基金】:广州市科技计划项目(201604020071)
【分类号】:TU399
,
本文编号:1881108
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1881108.html