建筑围护结构与暖通空调能量系统热力学基础研究
本文选题:建筑能量系统 + 围护结构 ; 参考:《湖南大学》2015年博士论文
【摘要】:能源是人类社会经济发展的基础,随着社会的发展能源问题日益突出。作为能源消耗的重要部门,建筑能源消耗占到了世界一次能源消耗的三分之一左右,建筑节能势在必行。研究指出,暖通空调系统能耗是建筑能耗的重要组成部分,如何有效降低暖通空调系统能耗对于建筑节能至关重要。从能量的本质来看,节能实质上是减少对能源可用部分的消耗,即节(?)。本文是在总结以往研究的基础上,提出了以室内环境作为参考环境的建筑能量系统(?)分析方法,建立建筑围护结构(?)分析模型,并对其主要影响因素进行了分析,为建筑围护结构设计特别是被动式建筑节能技术提供理论指导;分析了新风负荷对暖通空调系统总体负荷的影响,提出了基于热电效应的主动型新风热回收措施,建立了热力学分析模型,并进行了实验研究;引入现代(?)分析方法,建立暖通空调系统现代(?)分析模型,并对一办公建筑的暖通空调系统进行了分析,对暖通空调系统进行优化分析。主要研究内容和成果如下:(1)详细阐述了(?)分析方法的主要概念、计算方法、(?)效率等,并给出了建筑能量系统(?)分析的常用计算方法;在阐述传统(?)分析方法局限性的基础上,引入现代(?)分析方法,并对其概念和计算分析方法进行详细阐述,为后续对建筑围护结构和暖通空调系能量系统的(?)分析研究阐明了理论基础;(2)建筑能量系统(?)分析常采用室外环境作为建筑能量系统(?)分析的参考环境,此方法具有一定的局限性。本文分析了湿空气(?)值随地点和时间的变化,并以典型空气加热过程为例,分析了不同时间地点对(?)分析结果的影响。结果指出,以室外环境为(?)分析的参考环境时,室外环境随时间、地点等参数的变化对(?)分析的结果影响较大,使得(?)分析的结果不具有通用性。分析了建筑能量系统能量流动过程,可以将室内环境看成建筑能量系统各种能量转化的最终状态,考虑到室内环境的相对稳定性,提出以室内环境作为建筑能量系统(?)分析的参考环境。(3)结合能量分析和(?)分析方法,建立建筑围护结构热力学分析模型,并以位于长沙的一办公建筑为例,对其围护结构热力学性能进行了分析,然后通过改变主要建筑围护结构参数,分别研究了外墙传热系数、外窗传热系数和窗墙比的改变对参考建筑热力学性能的影响。考虑到我国建筑气候分区,将参考建筑设定于五个建筑气候分区的典型城市,以考察不同气候对建筑热力学性能的影响。结果指出,建筑冷热负荷的(?)值较低,只需要品位较低的能源就能满足建筑负荷需求,实际选择暖通空调系统时,需要考虑到能源品质的匹配,尽量引入低品位能源,提高能源利用效率。建筑围护结构参数对建筑热力学性能影响较大,应综合考虑建筑全年冷热负荷,合理确定建筑围护结构参数。对于建筑负荷各组成部分而言,在其进入室内形成冷热负荷的过程中,存在较大的(?)损失,本文揭示了建筑各种热扰在形成负荷过程中的(?)损失,进而从(?)分析角度说明了建筑热扰的可利用性。其中,太阳辐射(?)损失较大,可加以合理利用。并且,对建筑冷负荷进行分析,特别是进行(?)分析时,不能忽略潜热冷负荷对建筑全年冷负荷(?)值的影响,这点对于位于夏季潮湿地区的建筑尤为重要。建筑围护结构热力学分析为建筑设计尤其是被动式建筑技术及建筑能量系统热力学分析提供了理论指导。(4)本文在分析不同气候区域典型城市参考建筑的新风负荷的基础上,阐明了新风负荷对建筑暖通空调系统总负荷的重要影响。因此,为了降低新风负荷,本文提出了基于热电效应的适用于小型空调系统的新风热回收措施,建立了热力学分析模型,并进行了实验研究。结果指出,整个新风机的工作过程中,新风机组满足新风处理要求,将新风处理到室内实际状态。从能量分析角度而言,其工作效率较高,但是,通过(?)分析发现,其(?)效率较低,夏季模型(?)效率最高为11.04%,冬季模型最高(?)效率为5.06%。(?)损失最大的部位为热电芯片的内部能量转换,有必要引入其他能源提高热电新风机热电芯片的效率,改进热电新风机的性能;热电新风机与空气之间的热交换过程,尤其是热电芯片热端的换热器在热交换的过程中(?)损失较大,其传热效率可进一步改善。此外,从热电新风机工作适宜工作的温度来看,其适合于温和地区的新风热回收。(5)引入现代(?)分析方法,建立暖通空调系统(?)分析通用模型,并提出空调系统与负荷的匹配度的概念,来整体衡量空调系统能耗与负荷之间的能量本质上的匹配程度,在此基础上对典型办公建筑空调系统进行了分析。结果指出,此办公建筑空调系统与负荷的匹配度较差,分别为采暖季=10.75,空调季=54.15,应尽量引入低品位冷热源,减少高品位能源的消耗,提升系统匹配度。从传统的(?)分析角度看,系统整体(?)效率为采暖季6.81%,空调季3.19%,系统最大(?)损失出现在风冷热泵机组,采暖季为15.11MWh,空调季为129.23MWh,应重点对风冷热泵机组进行优化,来提升系统整体效率。而现代(?)分析指出,系统的最大(?)损失亦出现在风冷热泵机组,(?)损耗的大部分是不可避免(?)损耗,其可避免(?)损耗为采暖季5.52MWh,空调季37.76MWh。并且,对于可避免(?)损耗,亦应区分内部与外部可避免(?)损耗来确定造成(?)损耗的原因。对于参考建筑暖通空调系统而言,其外部可避免(?)损耗大于内部可避免(?)损耗,应同时关注风冷热泵和其他部件造成的(?)损耗,提升系统整体能量利用效率。系统采暖季与空调季的修正(?)效率分别为20.47%和13.80%,系统修正(?)效率真实体现了系统对能量的利用效率。
[Abstract]:Energy is the basis of human social and economic development, with the development of energy problems with the development of society. As an important sector of energy consumption, building energy consumption accounts for about 1/3 of the world's energy consumption, and building energy conservation is imperative. It is pointed out that energy consumption of HVAC system is an important part of building energy consumption, such as How to effectively reduce the energy consumption of HVAC system is very important for building energy conservation. From the essence of energy, energy saving is essentially reducing the consumption of energy available to energy, that is, the section (?). On the basis of summarizing the previous research, this paper puts forward the building energy system (?) analysis method based on the indoor environment as a reference environment, and establishes the building enclosure. The analysis model of protecting structure (?) and its main influencing factors are analyzed. The theoretical guidance is provided for the design of building enclosure structure, especially the energy-saving technology of passive building. The influence of new wind load on the overall load of HVAC system is analyzed. A new method of active new wind heat recovery based on thermoelectric effect is put forward, and the thermodynamic analysis is established. A modern (?) analysis method is introduced to establish the modern (?) analysis model of HVAC system, and the HVAC system is analyzed and the HVAC system is optimized. The main research contents and results are as follows: (1) the main concepts and calculation methods of the analysis method are described in detail. On the basis of the limitations of the traditional (?) analysis method, the modern (?) analysis method is introduced, and its concept and calculation analysis methods are expounded in detail, and the analysis and Research on the building enclosure structure and the energy system of HVAC system are clarified in the future. Theoretical basis; (2) the construction energy system (?) analysis often uses the outdoor environment as the reference environment for the analysis of the building energy system. This method has some limitations. This paper analyses the change of the wet air (?) value with the place and time, and takes the typical air heating process as an example to analyze the influence of the analysis results at different time and place. The results show that, with the reference environment of outdoor environment as (?) analysis, the changes of outdoor environment parameters such as time and location have great influence on the results of (?) analysis. The results of the analysis are not universal. The energy flow process of the building energy system is analyzed, and the indoor environment can be regarded as the most important energy conversion of the building energy system. In the final state, considering the relative stability of the indoor environment, an indoor environment is proposed as the reference environment for the analysis of the building energy system. (3) the thermodynamic analysis model of the building enclosure structure is established by combining the energy analysis and (?) analysis method, and the thermodynamic performance of its enclosure is analyzed with an example of an office building located in Changsha. Then by changing the parameters of the main building envelope, the influence of the external wall heat transfer coefficient, the heat transfer coefficient of the outer window and the change of the window wall ratio on the thermodynamic performance of the reference building was studied. The reference building was set in the typical cities of five climatic zoning in China to investigate the building thermodynamics of different climate. The results show that the (?) value of the building heat and heat load is low, and only the lower grade energy can meet the demand of the building load. In the actual selection of HVAC system, the matching of energy quality should be taken into consideration, the low grade energy is introduced as far as possible to improve the efficiency of energy utilization. In the process of building the cold and heat load in the interior of the building, there is a great loss in the process of forming the cold and heat load in the interior of the building. It is clear that the thermal disturbance of building is available. Among them, the solar radiation (?) loss is large and can be used reasonably. And the analysis of the building cold load, especially in the analysis, can not ignore the effect of the latent heat cooling load on the annual cold load (?) value of the building. This is especially important for the buildings in the wet area in summer. The thermodynamic analysis provides theoretical guidance for the architectural design, especially the passive building technology and the thermodynamic analysis of the building energy system. (4) on the basis of the analysis of the new wind load of the typical urban reference buildings in different climate regions, this paper clarifies the important influence of the new wind load on the total load of the building HVAC system. In this paper, the new wind heat recovery measures for small air conditioning system based on thermoelectric effect are put forward, and a thermodynamic analysis model is set up, and the experimental study is carried out. The results show that the new wind turbine meets the requirements of the new wind treatment in the working process of the new fan, and the new wind is treated to the actual condition of the indoor air. In terms of degree, its efficiency is high, but through (?) analysis, it is found that its (?) efficiency is low, the maximum efficiency of summer model (?) is 11.04%, the highest (?) efficiency of the winter model is 5.06%. (?) the largest loss part is the internal energy conversion of the thermoelectric chip. It is necessary to introduce other energy to improve the efficiency of thermoelectric chips and improve the new heat and power. The performance of the fan, the heat exchange between the thermoelectric new fan and the air, especially the heat exchanger at the hot end of the thermoelectric chip, has a greater loss in heat exchange, and the heat transfer efficiency can be further improved. In addition, it is suitable for the new wind heat recovery in the mild area from the temperature of the suitable work of the thermoelectric new air blower. (5) the modern (?) The general model of HVAC system is established, and the concept of the matching degree of air conditioning system and load is put forward to measure the essential matching degree of energy between the energy consumption and the load of the air conditioning system. On this basis, the typical office building air conditioning system is analyzed. The results show that the office building air conditioning system is used. In the heating season =10.75 and air conditioning season =54.15, the low grade cold and heat source should be introduced to reduce the consumption of high grade energy and improve the matching degree of the system. From the traditional (?) point of view, the overall system (?) efficiency is 6.81% in the heating season, 3.19% in the air conditioning season, and the maximum (?) loss in the air cooling heat pump unit and the heating season. For 15.11MWh, the air conditioning season is 129.23MWh, the air cooling heat pump unit should be optimized to improve the overall efficiency of the system. And the modern (?) analysis indicates that the maximum (?) loss of the system is also in the air cooled heat pump unit. Most of the loss is inevitable (?) loss, which can avoid (?) loss for heating season 5.52MWh, air conditioning season 37.76MWh. and, For avoidable loss, internal and external avoidable loss should be distinguished to determine the cause of loss. For the reference building HVAC system, the external avoidable (?) loss is greater than the internal avoidable loss, and the losses caused by the air cooling heat pump and other components should be closed at the same time, and the overall energy efficiency of the system is improved. The correction efficiency of system heating season and air-conditioning season is 20.47% and 13.80% respectively, and the system correction efficiency reflects the system's energy utilization efficiency.
【学位授予单位】:湖南大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TU83;TU111.4
【相似文献】
相关期刊论文 前10条
1 龙惟定,范存养;高层建筑空调发展动态[J];暖通空调;2001年01期
2 王建华;光伏建筑空调的稳定控制[J];暖通空调;2004年01期
3 白玮;龙惟定;刘仲英;;上海市民用建筑空调能源需求与环境负荷的系统动力学分析[J];暖通空调;2007年12期
4 韩路磊;;纺织厂空调与民用建筑空调的区别浅析[J];安徽建筑;2010年04期
5 李春来;;《建筑空调技术》课程贯穿项目教学法的探讨与实践[J];学理论;2010年27期
6 姜凤华;李坤;刘铨;王晓芳;李海平;李君;张亚平;;台州市建筑空调使用现状调查分析及对策研究[J];台州学院学报;2012年06期
7 何天祺;;高层建筑空调的新风供应问题[J];建筑技术通讯(暖通空调);1987年04期
8 ;《’97国际高层建筑空调学术会议》通知[J];制冷技术;1997年02期
9 顾安忠;国际高层建筑空调学术会议在上海召开[J];制冷技术;1998年04期
10 ;’2000国际高层建筑空调学术会议第一次通知(对国内人士)[J];制冷技术;1999年02期
相关会议论文 前10条
1 龙惟定;白玮;;我国民用建筑空调的发展前景[A];第4届中国户式中央空调应用技术研讨会论文集[C];2005年
2 周为人;;漕河泾开发区建筑空调方案的选择及应用[A];第2届中国家用/商用中央空调应用技术研讨会论文集[C];2003年
3 郑远;;医院建筑空调的特殊性[A];第三届海峡两岸土木建筑学术研讨会论文集[C];2007年
4 方恒和;;建筑空调的节能[A];上海市制冷学会2011年学术年会论文集[C];2011年
5 龙惟定;范存养;许雷;潘毅群;;上海高层建筑空调对城市能源与环境的影响[A];1999年全国空调新技术交流会论文集[C];1999年
6 李姣;;论建筑空调运行质量[A];2014年8月建筑科技与管理学术交流会论文集[C];2014年
7 顾迎春;高猛;;高层建筑空调冷、热源设备布置新方式的探讨[A];全国暖通空调制冷1998年学术年会论文集(2)[C];1998年
8 王正新;肖平;;大型建筑空调的节能控制系统[A];2005年山东省制冷空调学术年会论文集[C];2005年
9 陈红兵;魏平;王钢;;大型公共建筑空调监控系统的设计与优化运行[A];第八届全国信息获取与处理学术会议论文集[C];2010年
10 杨婷;;高层建筑空调设计综述[A];全国暖通空调制冷2008年学术年会资料集[C];2008年
相关重要报纸文章 前10条
1 建文;国务院下发通知要求严格执行公共建筑空调温度控制标准[N];中华建筑报;2007年
2 刘丰;福建将大力发展绿色建筑[N];建筑时报;2014年
3 陈哲;26℃背后的节能之道[N];中华建筑报;2007年
4 记者 刘月月;北京明确绿色建筑十项重点任务[N];中国建设报;2013年
5 广东建设报记者 谈健;郑爱军:推行绿色建筑关键在大业主[N];广东建设报;2011年
6 南方日报记者 谢庆裕 实习生 吴晓彭;新楼能耗比老宅高10倍多[N];南方日报;2010年
7 南方日报记者 谢庆裕;空调负荷将耗尽10个三峡电站[N];南方日报;2011年
8 冯海波邋通讯员 高凌波;标志性建筑将更多“广东建造”[N];广东科技报;2007年
9 本报记者 于忠宁;九成建筑不节能的警示[N];工人日报;2007年
10 ;深圳市绿色建筑促进办法[N];深圳特区报;2013年
相关博士学位论文 前5条
1 李洋;建筑能量系统热力学分析与低?优化研究[D];西安建筑科技大学;2015年
2 韩天鹤;建筑围护结构与暖通空调能量系统热力学基础研究[D];湖南大学;2015年
3 周智勇;建筑能耗定额的理论与实证研究[D];重庆大学;2010年
4 龙恩深;建筑能耗基因理论研究[D];重庆大学;2005年
5 杨小山;室外微气候对建筑空调能耗影响的模拟方法研究[D];华南理工大学;2012年
相关硕士学位论文 前10条
1 杨光;华工东二二楼办公室节能实践与节能潜力研究[D];华南理工大学;2015年
2 王晨;LOW-E玻璃在西安地区建筑外围护结构的适用性研究[D];西安建筑科技大学;2015年
3 褚吉平;重庆市某公共建筑空调能耗模拟分析及评价[D];重庆大学;2015年
4 李俊橙;成都大型公共建筑空调系统节能诊断与分析[D];重庆大学;2015年
5 沈帆;窗户特性对建筑空调负荷的影响及经济性分析[D];华中科技大学;2014年
6 过e,
本文编号:1908000
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1908000.html