T形钢管混凝土组合柱—钢筋混凝土梁边节点抗震性能研究
[Abstract]:Concrete filled steel tubular special-shaped column structure is developed on the basis of reinforced concrete special-shaped column structure. Its greatest advantages are: the use of outer steel tube to improve the bearing capacity and ductility of core concrete, to solve the common reinforced concrete special-shaped column structure can not be used in high-rise buildings and high seismic fortification area defects, at the same time. In recent years, scholars at home and abroad have little research on the beam-column joints of concrete filled steel tubular special-shaped columns, and all of them focus on the connection between special-shaped columns and steel beams. For the connection form of concrete filled steel tubular special-shaped columns and reinforced concrete beams, as well as In this paper, T-shaped concrete-filled steel tubular composite columns are designed and manufactured with the support of Hubei Natural Science Foundation in 2012 (2012 FFB05112) and China Central University Funding Project (WUT2014-IV-125) in 2014. The experimental study, finite element numerical simulation and theoretical analysis are combined to study the mechanical and seismic performance of the two types of joints. The main research contents and achievements are summarized as follows: (1) With the length of corbel, the thickness of end plate, the diameter of high-strength bolts, the reinforced ribs are set. Whether it is or not, the diameter of ring bars and the setting mode of ring bars are the main parameters. According to the scale of 1:2, 10 joints with extended end-plate and 7 joints with reinforced ring bars are manufactured. Hysteresis loops, skeleton curves, displacements, relative angular ductility of beams and columns, and energy dissipation performance are studied. The influence degree of each factor on the bearing capacity and energy dissipation capacity of the joints is determined by the analysis of test parameters. The design suggestions and construction measures of the joints are put forward. The hysteretic curves of the specimens are full, the joints of the extended end-plate are inverted S-shaped, the equivalent viscous damping coefficient EH is between 0.147 and 0.176, and the displacement ductility coefficient is between 3.48 and 6.29; the joints of the reinforced annular bars are arched, EH is between 0.199 and 0.262, and EH is between 2.88 and 4.51; the two types of joints are the most common. The large shear angle ranges from 0.796% to 4.488% of the relative ultimate rotation angle, and the influence of shear deformation in the joint domain on the structural deformation can be neglected. The joints have good seismic resistance. (2) The skeleton curve and hysteretic curve of the tested joints are analyzed and fitted, and the restoring force models of the two types of joints are established by using the de-dimensionalization method. The model is composed of three-fold skeleton curve model, stiffness degradation law and hysteretic criterion. The measured skeleton curve and hysteretic curve are compared with the established restoring force model curve, which proves the correctness of the proposed joint restoring force model. (3) Monotonic loading and cyclic loading are simulated and analyzed by nonlinear finite element software ABAQUS. Comparing the calculated results with the experimental data to verify the rationality of the finite element model; through the analysis of the working mechanism and stress distribution characteristics of the joints, the crack development process and shear stress variation law of the joints are revealed. On this basis, the axial compression ratio, beam-column ratio are investigated. The results show that the load-displacement curves at the end of the beam are in good agreement with the experimental values; the shear force of the joints is mainly supported by baroclinic bars formed in the core area, and the ratio of bracket webs is small; stiffening ribs can be effective. It can restrain the end-plate prying deformation and reduce the stress concentration in the joint area; when the load at the end of the beam reaches the extreme value, the steel tube wall of the reinforced ring-bar connection joint has obvious buckling section within the height of 1/3 beam of the outer flange of the corbel flange, and the steel tube can be partly thickened to reinforce the joint; the axial compression ratio and the beam-column stiffness ratio are smaller than the bearing capacity of the joint, but the beam-column stiffness ratio is lower. The increase of linear stiffness decreases to a certain extent compared with the initial stiffness of the joints; the increase of concrete strength grade of the frame beam improves the bearing capacity of the two types of joints, especially the reinforced ring-bar joints; the bending capacity of the joints increases significantly with the increase of reinforcement ratio, but when the reinforcement ratio of the frame beam exceeds 1.8%, the bearing capacity of the joints increases. (4) On the basis of experimental and theoretical research, considering the influence of end plate thickness, bolt diameter and stiffener rib on the bending capacity of the joint, the calculation formulas for determining the type of high-strength bolt and the size of end plate are established; the internal force transfer mechanism in the core area of the two types of joints is analyzed, and the joint level is given. Considering the influence of axial pressure, high strength bolt prestressing and flange concrete, the shear bearing capacity formulas of two kinds of joint core area are established and compared with the experimental data of related literature. The results show that the calculated values of bearing capacity and the experimental values are in good agreement. The research results will be used to compile special-shaped joints. The technical specification of concrete filled steel tubular structure provides experimental basis and theoretical support.
【学位授予单位】:武汉理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TU398.9;TU352.11
【参考文献】
相关期刊论文 前10条
1 王先铁;周超;马尤苏夫;杨航东;王连坤;;方钢管混凝土平面框架的恢复力模型研究[J];地震工程与工程振动;2014年05期
2 赵毅;徐礼华;程康;刘斌;;劲性环梁式钢管混凝土节点受力性能研究[J];工程力学;2013年S1期
3 吴波;赵新宇;杨勇;刘琼祥;;薄壁圆钢管再生混合柱-钢筋混凝土梁节点的抗震试验与数值模拟[J];土木工程学报;2013年03期
4 韦宏;陈添明;刘庆辉;;钢筋混凝土梁-方钢管混凝土柱环梁节点静力试验研究及设计方法[J];建筑结构学报;2013年01期
5 周鹏;薛建阳;陈茜;葛广全;葛鸿鹏;侯文龙;;矩形钢管混凝土异形柱-钢梁框架节点抗震性能试验研究[J];建筑结构学报;2012年08期
6 许成祥;吴赞军;曾磊;张继承;马进军;;T形钢管混凝土柱-工字钢梁框架顶层边节点抗震性能试验研究[J];建筑结构学报;2012年08期
7 曲慧;;钢管混凝土柱-钢筋混凝土梁连接节点抗震性能的机理分析[J];工程力学;2012年07期
8 林明森;戴绍斌;刘记雄;彭忠;;T形钢管混凝土柱与钢梁外伸端板连接节点抗震性能试验研究[J];地震工程与工程振动;2012年02期
9 施刚;袁锋;霍达;石永久;王元清;;钢框架梁柱节点转角理论模型和测量计算方法[J];工程力学;2012年02期
10 丁永君;尚奎杰;万方贵;秦颖;;矩形钢管混凝土柱-H型钢梁节点抗震性能试验研究及有限元分析[J];建筑结构学报;2012年02期
相关博士学位论文 前9条
1 林明森;T形钢管混凝土组合柱—钢梁连接节点抗震性能研究[D];武汉理工大学;2012年
2 李威;圆钢管混凝土柱—钢梁外环板式框架节点抗震性能研究[D];清华大学;2011年
3 黄频;端板螺栓连接钢—混凝土组合节点试验及力学性能研究[D];湖南大学;2011年
4 于航;钢管混凝土节点抗震与框架抗连续性倒塌性能研究[D];哈尔滨工业大学;2010年
5 刘义;型钢混凝土异形柱框架节点抗震性能及设计方法研究[D];西安建筑科技大学;2009年
6 黄俊;异形钢管混凝土组合柱抗震性能研究[D];武汉大学;2009年
7 刘威;钢管混凝土局部受压时的工作机理研究[D];福州大学;2005年
8 戴绍斌;钢框架—混凝土筒住宅结构性能与配套技术研究[D];武汉理工大学;2004年
9 周天华;方钢管混凝土柱—钢梁框架节点抗震性能及承载力研究[D];西安建筑科技大学;2004年
相关硕士学位论文 前10条
1 李雪平;T形钢管混凝土柱—钢梁框架顶层边节点非线性分析及设计方法研究[D];长江大学;2012年
2 马超;T形钢管混凝土柱—钢梁框架边柱外加强环节点抗震性能研究[D];长江大学;2012年
3 万波;异形钢管混凝土柱—钢梁框架中柱节点受力性能试验研究[D];长江大学;2012年
4 吴赞军;T形钢管混凝土柱—钢梁框架顶层边节点抗震性能研究[D];长江大学;2012年
5 高代明;方钢管混凝土柱-H型钢梁节点的低周反复荷载试验研究[D];青岛理工大学;2011年
6 单南平;低周反复荷载作用下方钢管混凝土环梁节点试验研究[D];华南理工大学;2011年
7 侯文龙;方钢管混凝土异形柱与钢梁节点性能试验与理论研究[D];西安建筑科技大学;2011年
8 傅冬;L形钢管混凝土组合柱试验研究及有限元分析[D];武汉理工大学;2010年
9 马良璇;带抗剪环的钢管混凝土柱环梁节点受力性能研究[D];重庆大学;2008年
10 孙丙友;钢管混凝土—钢筋混凝土环梁节点抗震性能有限元模拟[D];合肥工业大学;2007年
,本文编号:2194157
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2194157.html