R134a在螺旋套管冷凝器中的换热性能实验研究
[Abstract]:It is very important to study the heat transfer performance of the air source heat pump water heater. This is because the air source heat pump water heater is not only safe and energy-saving, but also easy to install and use, no pollution to the environment. More importantly, it has the advantages of wide range of use, long service life and low maintenance costs. The characteristics of refrigerant and the heat transfer effect of condenser determine the heat transfer performance of air source heat pump water heater to a certain extent. Spiral tube heat exchanger has the advantages of compact structure, simple manufacture, low price and high heat transfer intensity. Especially in the process of refrigerant substitution, the accuracy of heat transfer coefficient of spiral tube annular space refrigerant is one of the key parameters necessary to study the condensation heat transfer performance of a new type of alternative refrigerant. Even so, the thermal and physical properties of R134a and R22 are not the same. Therefore, it is very important to study the heat transfer performance and pressure drop characteristics of R134a for improving the original system equipment, researching and developing new system equipment. The total heat transfer capacity, total heat transfer coefficient, suction and exhaust pressure of the compressor, input power of the system, heat production coefficient and heat production coefficient of the condenser are tested. The total heat transfer capacity, total heat transfer coefficient, suction and exhaust pressure of the compressor, and the input power of the system are measured when the inlet water temperature of the condenser is constant under the condition of DC steady state. (1) When the water flow is circulated, the inlet water flow of the condenser is constant, and with the inlet water temperature rising, the total heat transfer coefficient of the condenser is changed. When the inlet water temperature of the spiral tube condenser increases from 25.2 C to 63 C, the total heat transfer coefficient decreases. The total heat transfer coefficient increases from 1184.12 W / (m2 K) to 1643.21 W / (m2 K), the suction pressure rises from 0.34 MPa to 0.38 MPa, the exhaust pressure rises from 0.77 MPa to 2.00 MPa, the input power rises from 1040 W to 2100 W, the thermal performance coefficient COP decreases from 4.4 to 1.2, and the heat production decreases from 1387.83 W to 667.14 W. W. (2) When the inlet water temperature of the condenser is constant, the total heat transfer capacity and total heat transfer coefficient of the condenser increase with the increase of the inlet water flow rate, while the suction, exhaust pressure and input power of the compressor decrease. The heat production and heating coefficient of the heat pump system increase with the increase of the inlet water flow rate. When the inlet flow rate of the spiral tube condenser increases from 1.19 m3/h to 2.16 m3/h, the total heat transfer capacity of the condenser increases from 4025.72 W to 7565.71 W, the total heat transfer coefficient increases from 1472.03 W /(m2.K) to 3956.29 W /(m2.K), the suction pressure decreases from 0.36 MPa to 0.35 MPa, the exhaust pressure decreases from 1.38 MPa to 1.27 MPa, and the system input power decreases from 1488.67 W to 1 956.29 W /(m2.K). At 1423.75W, the COP of the system increases from 2.5 to 3.0, and the heat of the system increases from 986.90W to 1087.06W. (3) When the inlet water temperature of the condenser is constant, the total heat transfer capacity and the total heat transfer coefficient of the spiral sleeve condenser increase with the increase of the inlet water flow rate. When the inlet water temperature is kept at 22 C and the inlet water flow rate of the spiral tube condenser increases from 0.26 m3/h to 0.71 m3/h, the total heat transfer capacity of the spiral tube condenser increases from 3614.24 W to 4165.96 W, the total heat transfer coefficient increases from 1999.03 W /(m2.K) to 2835.92 W /(m2.K), and the suction pressure of the compressor increases from 0.32 MP. A decreases to 0.30 MPa, the exhaust pressure decreases from 0.84 MPa to 0.62 MPa, and the input power of the system decreases from 1040 W to 920 W. In this paper, the heat transfer performance of the spiral tube condenser and the operation performance of the heat pump are studied experimentally and theoretically. The research is expected to provide reference for optimum design of heat exchanger and energy-saving operation of heat pump water heater in refrigerant substitution.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU822
【相似文献】
相关期刊论文 前10条
1 魏耀东,魏奇业,韩光泽,华贲;多效蒸发器换热管的换热性能和机械强度分析[J];华北电力大学学报;2003年05期
2 张寅平;非接触式汽液固系统储换热性能的实验研究[J];太阳能学报;1998年04期
3 连添达;静止密闭空气在降温过程中换热性能的测定研究[J];天津商学院学报;1991年03期
4 刘召军;谢旭良;李增耀;屈治国;陶文铨;;热管型散热器换热性能的实验研究及数值模拟[J];工程热物理学报;2009年07期
5 程文龙;韩丰云;韦文静;;单相流体通过多孔金属换热器换热性能的理论分析[J];化工学报;2011年10期
6 蒋恩泽;强天伟;黄书峰;曹鹏华;;双U型桩基埋管换热性能模拟与研究[J];科技致富向导;2012年35期
7 高桂芝;高俊明;;地源热泵U形地埋管换热性能及其影响因素分析[J];河北工程技术高等专科学校学报;2013年01期
8 李青;刘金祥;陈晓春;徐稳龙;丁高;潘云钢;;U形毛细管席冷却顶板换热性能数值模拟与分析[J];暖通空调;2010年04期
9 张东生;杜扬;陈思维;;管壳式换热器换热性能的数值模拟研究[J];节能技术;2006年05期
10 郑荣波;刘刚;刘自华;;两相闭式热虹吸管的几何尺寸对其换热性能的影响研究[J];制冷;2009年02期
相关会议论文 前10条
1 岳丽燕;韩再生;;含水层对垂直地埋管换热性能影响分析[A];第十三届中国科协年会第14分会场-地热能开发利用与低碳经济研讨会论文集[C];2011年
2 吴祥生;杨嘉;黄金强;信海;;重庆市某高校绿色建筑示范楼地热能换热性能测试及分析[A];全国暖通空调制冷2010年学术年会资料集[C];2010年
3 章晓龙;李征涛;;润滑油对制冷系统换热性能影响的研究进展[A];上海市制冷学会2013年学术年会论文集[C];2013年
4 史学增;王伟勇;张定才;;船用冷凝器冷凝强化管换热性能研究[A];上海市制冷学会2007年学术年会论文集[C];2007年
5 杨敏;陈颖;史保新;;广州与两类地区埋地换热器换热性能的比较[A];中国制冷学会2007学术年会论文集[C];2007年
6 朱贺;张永存;刘书田;;开孔金属泡沫换热性能表征方法研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 李魁山;张旭;高军;刘俊;;桩基式土壤源热泵换热器换热性能及土壤温升研究[A];中国制冷学会2007学术年会论文集[C];2007年
8 张锐;张旭;周翔;董丽娟;唐凯;;流量对地埋管换热性能影响的实验研究[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年
9 刘艳艳;王巍;;场协同理论监测主表面式回热器的换热性能[A];2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集[C];2008年
10 高彦明;罗行;Stephan Kabelac;;蒸发器在热虹吸系统中的阻力压降与换热性能的数学建模与分析[A];中国化工学会2009年年会暨第三届全国石油和化工行业节能节水减排技术论坛会议论文集(上)[C];2009年
相关硕士学位论文 前10条
1 姚丽华;热源塔换热性能研究与应用[D];南京师范大学;2015年
2 李豪;基于有机朗肯循环余热回收系统的换热器结构数值研究[D];华北电力大学;2015年
3 袁博;内插螺旋翅片式EGR冷却器结构及流动传热性能研究[D];浙江大学;2016年
4 白崇俨;小通道蒸发器热虹吸循环换热性能的研究[D];浙江大学;2016年
5 洪珊瑚;R134a在螺旋套管冷凝器中的换热性能实验研究[D];西安科技大学;2015年
6 张e,
本文编号:2247200
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2247200.html