海水源热泵用双螺旋管海水换热器传热特性的研究
[Abstract]:Combined with the current situation of energy shortage in coastal buildings in China, the sea water source heat pump system with high efficiency, energy saving and environmental protection has important research value and application prospect as the cooling and heat source of coastal buildings. Therefore, a new type of double helical tube seawater heat exchanger for sea water source heat pump system is proposed in this paper, and the heat transfer characteristics of the heat exchanger are studied experimentally and numerically. Based on the characteristics that the sea water temperature is close to the freezing point temperature in the northern coastal area, this paper not only studies the heat transfer characteristics of the heat exchanger in summer and non-icing conditions in winter, but also focuses on the heat transfer characteristics of the freezing condition in winter. Firstly, the mathematical models of double-helical tube seawater heat exchangers in winter icing, non-icing and summer conditions were established, and the performance test system of double-helix sea water heat exchangers was built in Tianjin International Cruise Port. The temperature distribution along the tube length and the ice thickness distribution along the pipe length were measured under the above three conditions. The experimental results are introduced into the corresponding mathematical model in turn, and the convection heat transfer coefficient outside the tube of the heat exchanger is solved. The variation range of convection heat transfer coefficient of the heat exchanger outside the tube during the test period is obtained: when the seawater velocity is 0.07 ~ 0.38 m / s in winter, the corresponding convection heat transfer coefficient is 427.8 ~ 712.8 W / (m ~ (2) K), and the sea water velocity is 0.21 ~ (0.53) m / s under freezing condition in winter, and the corresponding convection heat transfer coefficient is 712.8 W / (m ~ (2) K) in winter when the water velocity is 0.07 ~ 0.38 m / s. The corresponding convection heat transfer coefficient is 582.8~853.9W/ (m ~ 2 ~ (2) K), and the variation range of convection heat transfer coefficient is 451.7N ~ (762.4) W / (m ~ (2) K) when the variation range of seawater velocity is 0.09 ~ 0.47 m / s in summer. Secondly, by using the mathematical model of double-helical tube seawater heat exchanger in summer and winter icing and non-icing conditions, the heat transfer characteristics in seawater are simulated and forecasted, that is, the tube length and diameter of the heat exchanger are studied by numerical simulation. The effects of flow velocity, inlet temperature and seawater temperature on the heat transfer characteristics of the heat exchanger were studied. The ice formation law of the outer ice layer and the effect of ice formation on the heat transfer characteristics of the heat exchanger in winter were simulated. Finally, taking the sea water source heat pump system used in an office building in Nanjiang Port of Tianjin Port as an example, a detailed selection method of double helical tube seawater heat exchanger is given and the economy of the flow velocity in the pipe is analyzed. The Energyplus energy consumption simulation software is used to simulate the annual load of the office building. Taking the life cycle cost and cost annual value as the evaluation index, the sea water source heat pump system with direct water intake mode is selected for the office building. The economy of the sea-based water source heat pump system based on leachate mode and the sea water source heat pump system with double helical tube seawater heat exchanger is compared and analyzed, and its energy saving and environmental protection benefit is evaluated.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TU83
【相似文献】
相关期刊论文 前10条
1 侯建方;通电螺旋管周围任意点猊向量的计算[J];低压电器;1986年05期
2 王琪;金属螺旋管的拉制[J];机械工人.冷加工;1998年08期
3 朱建国,仇性启;螺旋管技术研究[J];工业加热;2004年01期
4 湛含辉;朱辉;;螺旋管内迪恩涡运动的数值模拟[J];热能动力工程;2011年01期
5 肖峰;王秋雷;叶玲丽;;中空消音螺旋管挤出模设计[J];模具工业;2011年07期
6 李朝阳;马贵阳;徐柳;;螺旋管内流场数值模拟[J];辽宁石油化工大学学报;2011年03期
7 冯凯;钟建华;唐治立;;多头螺旋管换热过程的三维数值模拟[J];有色金属科学与工程;2012年03期
8 朱宏晔;杨星团;居怀明;姜胜耀;;氦气冲刷螺旋管束传热的数值研究[J];热科学与技术;2012年03期
9 哈桑;;特殊结构螺旋管风口的设计[J];重型机械;1980年01期
10 ;薄壁螺旋管[J];中国乡镇企业信息;1995年19期
相关会议论文 前9条
1 周维;张国鸿;阎小康;;离心式螺旋管构件热交换器流体力学分析报告[A];中国制冷学会2005年制冷空调学术年会论文集[C];2005年
2 郑之初;吴应湘;李清平;郭军;张军;唐驰;龚道童;;复合式分离器研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
3 王克亮;崔海清;吴辅兵;郑晓松;;螺旋管道内幂律流体流动压力梯度的计算[A];第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(上册)[C];2005年
4 ;带螺旋管的各点等温SDC311/5015量热仪[A];湖北省电机工程学会电厂化学专委会2007年学术年会论文集[C];2007年
5 周永;郑之初;张军;郭军;唐驰;;带孔螺旋管的油水分离实验研究[A];第十八届全国水动力学研讨会文集[C];2004年
6 张军;郭军;唐驰;龚道童;郑之初;;螺旋管和T型管的模拟试验[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
7 郑之初;张军;郭军;唐驰;王立洋;;复合式分离器的研究总结与展望[A];第二十届全国水动力学研讨会文集[C];2007年
8 杨战利;张善保;杨永波;唐麒龙;赵德民;;新型大电流空冷MAG焊枪研制[A];第十四届中国(北方)钢管与管道技术交流会会议论文集[C];2011年
9 张军;郑之初;郭军;唐驰;王立洋;;油气水砂多相分离的新方法[A];第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集[C];2008年
相关博士学位论文 前3条
1 郑万冬;海水源热泵用双螺旋管海水换热器传热特性的研究[D];天津大学;2015年
2 邵莉;R134a在卧式螺旋管内的两相流动与传热特性研究[D];山东大学;2009年
3 王克亮;幂律流体在螺旋管道内的流动[D];大庆石油学院;2004年
相关硕士学位论文 前10条
1 宋尚锐;R407c卧式螺旋管内的两相流动与传热特性的研究[D];山东大学;2015年
2 周维;模板法制备Ti纳米螺旋管及温度的影响[D];大连理工大学;2015年
3 吴杨杨;超临界CO_2在水平螺旋管内冷却换热和阻力特性研究[D];重庆大学;2015年
4 徐洪涛;螺旋管道内的流动阻力和传热性能研究[D];华东理工大学;2011年
5 王志国;螺旋管气液两相流数值模拟[D];中国石油大学;2007年
6 朱辉;迪恩涡及其强化螺旋管传热性能的研究[D];湖南工业大学;2010年
7 冯凯;多头螺旋管换热过程的数值模拟及其结构优化[D];江西理工大学;2012年
8 康奥峰;螺旋管内超临界氮的流动与传热特性研究[D];上海交通大学;2012年
9 李雪娇;厚壁螺旋管成型设备研究及有限元分析[D];吉林大学;2013年
10 陈非凡;螺旋管蓄能箱蓄能过程的数值模拟[D];南昌大学;2014年
,本文编号:2291626
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2291626.html