外包钢加固钢筋混凝土柱的非线性分析
[Abstract]:Because of its advantages such as small on-site workload, small influence on building space and short construction cycle, the steel-coated steel reinforcement method has been widely used in the reinforcement industry, and has been used to strengthen reinforced concrete structures and so on. Especially for the reinforcement of reinforced concrete members, the bearing capacity and stiffness of the members can be obviously improved. Therefore, it is a practical and valuable academic subject to study the nonlinearity of reinforced concrete columns strengthened with steel. A large number of experimental studies have been carried out on reinforced concrete columns strengthened with steel, and some important conclusions have been drawn. In view of the previous research, the unloading of reinforced concrete columns with stress history before reinforcement is carried out, and the influence of the amount of unloading on the performance of reinforced concrete columns after secondary loading is studied in this paper. By using the finite element software ABAQUS, the plastic damage constitutive model of concrete and the linear reinforced elastoplastic constitutive model of steel bar and coated steel are adopted according to the relevant regulations of Code for Design of concrete structures and Code for Design of reinforced concrete structures. Six models of steel-clad reinforced concrete columns with different unloading capacity were established, and the nonlinear analysis was carried out under axial loading and eccentric loading respectively, and the bearing capacity of the components was studied by studying how much the unloading capacity was to the members, and then analyzed the load-bearing capacity of the concrete columns under axial loading and eccentric loading respectively. The effect of ductility and utilization ratio of coated steel. At the same time, five finite element models are set up to analyze the influence of the thickness and strength of coated steel, the spacing of affixed plates, the cross-section size of angle steel and affixed plates, and the stress history on the strengthening performance of reinforced concrete columns. Through the finite element analysis, the following conclusions are drawn: for reinforced concrete columns subjected to axial compression, the maximum increase in bearing capacity is about 60% or so when strengthened, and the ductility of reinforced columns is the best. Under different stress level indexes, the smaller the stress level index, the higher the bearing capacity of reinforced columns and the higher the utilization ratio of outer steel, with the increase of the thickness of coated steel, and for the columns strengthened by eccentric compression, the loading capacity is the best when the load is unloaded about 40%. It is found that the smaller the spaced plate spacing is, the higher the bearing capacity is, but the increase in bearing capacity is not linear. Through finite element analysis, it is found that when the spacing is between 250mm~300mm, the bearing capacity increase is the largest and the strengthening effect is the best. It is found that the reinforcement effect is more obvious when the length of the angle steel is increased than the width of the plywood, and the bearing capacity of the reinforced column can be increased by 34.11% at the maximum, by changing the cross-section size of the angle steel and the section size of the patch plate. The formula of ultimate bearing capacity of reinforced concrete columns and the formula of outer steel utilization coefficient are used to calculate the model, and the numerical simulation value and theoretical calculation value are compared and analyzed by using the Code of Design for reinforcement of concrete structures and the formula of ultimate bearing capacity of concrete columns strengthened by external steel and the formula of outer steel utilization coefficient. It is found that the simulation value is within the scope of the code, indicating that the model meets the requirements, and that the research content of this paper can provide theoretical basis and reference value for engineering examples.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU375.3
【相似文献】
相关期刊论文 前10条
1 李敬业;陈丽华;顾亚林;;外包钢混凝土梁的应用及施工技术[J];石油施工技术;1983年05期
2 刘匀,张林绪,姜维山,林冰;外包钢新材料灌浆加固钢筋混凝土柱的研究与实践[J];西安建筑科技大学学报(自然科学版);1997年04期
3 吴波;计明明;;薄壁U形外包钢再生混合梁受弯性能试验研究[J];建筑结构学报;2014年04期
4 李九红,惠静薇,简政,朱轶韵;湿式外包钢加固柱极限承载力的研究[J];西安理工大学学报;2001年03期
5 ;轴力和弯矩共同作用下外包钢混凝土柱的试验研究[J];钢结构;2011年05期
6 张圣贤 ,包韵芳 ,范良干 ,杨继卓;除氧煤仓间外包钢混凝土框架设计[J];工业建筑;1986年01期
7 郭建湘,刘细林;外包钢混凝土构件的剪切强度分析[J];广州建筑;2005年01期
8 梁启雄;;外包钢混凝土构件的剪切强度分析[J];茂名学院学报;2009年04期
9 袁亚萍;;外包钢加固钢砼构件的动力性能研究[J];才智;2011年26期
10 范良干;;外包钢混凝土骨架电阻焊机研制成功[J];电力建设;1987年01期
相关会议论文 前10条
1 梁力;张道明;王伟;李明;;新型外包钢组合梁承载力数值仿真的实现[A];第16届全国结构工程学术会议论文集(第Ⅱ册)[C];2007年
2 徐德新;刘小明;段成晓;;外包钢结构在工程结构加固中的应用[A];中国钢协钢-混凝土组合结构协会第八次年会论文集[C];2001年
3 王学东;朱聘儒;吴振声;国明超;刘学东;;外包钢组合节点抗震性能初探[A];中国钢协钢-混凝土组合结构协会第三次年会论文集[C];1991年
4 滕智华;贺采旭;;外包钢混凝土梁受剪强度试验研究[A];中国钢协钢-混凝土组合结构协会第三次年会论文集[C];1991年
5 张道明;梁力;郭学东;;预应力外包钢组合梁弯曲延性的研究[A];第17届全国结构工程学术会议论文集(第Ⅱ册)[C];2008年
6 姜绍飞;刘之洋;;基于神经网络的外包钢混凝土受弯构件的研究[A];第五届全国结构工程学术会议论文集(第二卷)[C];1996年
7 朱轶韵;杨菊生;;外包钢加固构件的承载力及破坏状态探讨[A];第六届全国结构工程学术会议论文集(第一卷)[C];1997年
8 杜德润;李爱群;石启印;陈丽华;娄宇;李培彬;;外包钢-混凝土组合梁正截面抗弯承载力计算[A];第14届全国结构工程学术会议论文集(第二册)[C];2005年
9 姜绍飞;刘之洋;;外包钢混凝土组合梁的抗裂性能研究[A];中国钢协钢-混凝土组合结构协会第六次年会论文集(下册)[C];1997年
10 刘闯;王连广;吕月;;预应力外包钢混凝土T型梁抗弯承载力计算公式[A];中国钢协钢-混凝土组合结构分会第十一次年会论文集[C];2007年
相关硕士学位论文 前10条
1 李业骏;新型外包钢混凝土组合梁延性性能研究[D];江苏大学;2016年
2 赵磊;外包钢加固钢筋混凝土柱的非线性分析[D];兰州理工大学;2015年
3 陈轩;外包钢加固钢筋混凝土梁承载能力研究[D];浙江大学;2015年
4 赵海凤;湿式外包钢柱轴心受压承载力计算及其可靠度分析[D];武汉大学;2005年
5 范涛;外包钢加固钢筋混凝土构件的计算及有限元分析[D];西南交通大学;2006年
6 杨朋君;湿式外包钢加固混凝土轴心受压柱的应用研究[D];哈尔滨工程大学;2011年
7 霍丽南;外包钢混凝土现浇框架边节点抗震性能试验研究[D];西安建筑科技大学;2004年
8 范平平;外包钢加固钢筋混凝土构件的动力性能研究[D];西安科技大学;2008年
9 李育君;局部外包钢管装配柱的抗震性能分析及接头承载力计算[D];西安建筑科技大学;2013年
10 徐良进;外包钢加固钢筋混凝土梁的抗火性能分析[D];苏州科技学院;2014年
,本文编号:2458475
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2458475.html