饱和砂土基于相变状态的循环本构模型的研究
[Abstract]:Up to now, the study of saturated sand shows that shear expansion, cycling and anisotropy are three important mechanical characteristics of saturated sand, which are also different from other materials. There is a special point in the stress-strain curve of saturated sandy soil, that is, phase transition point, which is of special significance to the above-mentioned three characteristics of saturated sandy soil. Therefore, in this paper, the mechanical response of saturated sand under monotonic and cyclic loads is further studied from the above three aspects. Based on the existing constitutive model of saturated sand and the microscopic mechanism of sand, the influence of fabric change on accumulated plastic strain in the process of shear expansion is considered, and the cyclic action of saturated sand is also considered in this paper. A cyclic boundary interface model based on phase transition is established to describe the mechanical behavior of sand under monotonic and cyclic loads under different drainage conditions. The main research results of this paper are as follows: 1. Firstly, through the discussion of saturated sand test under different loads, the mechanism of macro-deformation caused by the change of microstructure of sand soil is discussed from the micro-phenomenon of sand soil, and the mechanism of macro-deformation caused by the change of micro-structure of sand soil is discussed. Then the macro-variables are used to reflect the change of micro-particles. The fabric-shear expansion internal variable is introduced to reflect the influence of micro-fabric-induced macro-shear expansion Zhang Liang on plastic cumulative deformation of saturated sand under cyclic loading. The relationship between macro and micro is established. 2. Generally, the determination of plastic modulus of the existing cyclic constitutive model of sand is cumbersome and involves a lot of parameters. In this paper, the change of volume of saturated dense sand under cyclic load is getting smaller and smaller under the condition of drainage from the point of view of experimental phenomenon. The variation rule of plastic modulus in the process of first loading and reloading (that is, monotone and cyclic loading and unloading) is summarized, and the existing formula of plastic modulus is modified, which is easy to determine, and it is easy to determine the plastic modulus in the process of first loading and reloading. Expression of plastic modulus suitable for cyclic loading. 3. According to the expression of e-log p 'proposed by Ishihara in 1993, combined with the expression of state parameter proposed by Zhang Weihua, It is revealed that this equation has some shortcomings in simulating the mechanical behavior of saturated sand under undrained conditions. In this paper, an expression for calculating phase transition relict ept suitable for undrained conditions is put forward, and a monotone constitutive model for undrained is established. Study on Constitutive Model and proposed Phase change porosity ept. based on Experimental data The results show that the constitutive model can better reflect the change of effective stress in the undrained process, and the expression of phase transition porosity ratio ept is also reasonable and effective. According to the cyclic load (excluding dynamic load), the constitutive model of cyclic boundary of saturated sand under different drainage conditions is proposed. The model describes the mechanical behavior of saturated sand under cyclic loading under different drainage conditions, such as the deformation process of saturated sand at first shearing and then dilating, and the trend that the volume increment becomes smaller and tends to be stable at last. The relationship between effective stress change and stress-strain under undrained condition. At the same time, the model can well reflect the phase transition point and peak point of sand under different drainage conditions.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TU441
【相似文献】
相关期刊论文 前10条
1 鲁晓兵;垂向荷载作用下饱和砂土的液化分析[J];岩石力学与工程学报;2001年03期
2 张均锋,孟祥跃,谈庆明,俞善炳;冲击载荷下饱和砂土砂面沉降的实验研究[J];岩石力学与工程学报;2001年04期
3 邵生俊,谢定义;饱和砂土的物态变化特性[J];岩土工程学报;2001年01期
4 王明洋,赵跃堂,钱七虎,国胜兵;饱和砂土爆炸液化模型研究[J];解放军理工大学学报(自然科学版);2001年02期
5 孟祥跃,张均锋,谈庆明,俞善炳;冲击载荷下饱和砂土中流动和破坏的X光观测[J];岩石力学与工程学报;2002年06期
6 王明洋,赵跃堂,钱七虎;饱和砂土动力特性及数值方法研究[J];岩土工程学报;2002年06期
7 贾德富;用人工神经网络预测饱和砂土的液化势[J];山西建筑;2004年07期
8 鲁晓兵;王淑云;崔鹏;;饱和砂土的断裂现象研究[J];岩石力学与工程学报;2004年S1期
9 国胜兵;王明洋;钱七虎;;饱和砂土爆炸液化特性研究[J];岩土力学;2007年03期
10 刘洋;周健;付建新;;饱和砂土流固耦合细观数值模型及其在液化分析中的应用[J];水利学报;2009年02期
相关会议论文 前10条
1 鲁晓兵;王淑云;张旭辉;;饱和砂土中水层形成及演化分析[A];第八届全国工程地质大会论文集[C];2008年
2 鲁晓兵;崔鹏;;振动载荷下饱和砂土中液化区的演化特性[A];岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C];2002年
3 鲁晓兵;王淑云;张金来;;垂向荷载作用下饱和砂土的稳定性分析[A];中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册)[C];2003年
4 袁晓铭;孙锐;石兆吉;;饱和砂土透镜体对地面运动的影响[A];中国土木工程学会第八届土力学及岩土工程学术会议论文集[C];1999年
5 江月霞;康志强;;饱和砂土地震液化分析综述[A];福建省第十三届水利水电青年学术交流会论文集[C];2009年
6 万良勇;谢定义;;初始渗流对饱和砂土动力特性的影响[A];岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C];2002年
7 谢定义;张建民;;饱和砂土动力特性的瞬态变化机理与分析[A];海峡两岸土力学及基础工程地工技术学术研讨会论文集[C];1994年
8 周景星;周克骥;邵全;;震前应力状态对饱和砂土动力强度影响的试验研究[A];中国土木工程学会第四届土力学及基础工程学术会议论文选集[C];1983年
9 刘洋;赵学同;;基于颗粒-流体耦合的饱和砂土地震液化分析[A];第八届全国地震工程学术会议论文集(Ⅰ)[C];2010年
10 詹良通;周晓文;刘鸣;;原状饱和砂土的振动孔压与变形的发展规律[A];岩土力学的理论与实践——第三届全国青年岩土力学与工程会议论文集[C];1998年
相关博士学位论文 前7条
1 赵春雷;饱和砂土基于相变状态的循环本构模型的研究[D];北京交通大学;2015年
2 冷艺;饱和砂土单调剪切特性与循环体变规律的试验研究[D];大连理工大学;2008年
3 陈存礼;饱和砂土体有效应力物态地震反应分析方法的研究[D];西安理工大学;2005年
4 张振东;预剪对饱和松砂剪切特性的影响及亚塑性边界面本构模型改进[D];大连理工大学;2008年
5 周海林;振动注浆中的砂土液化研究[D];中南大学;2002年
6 许成顺;复杂应力条件下饱和砂土剪切特性及本构模型的试验研究[D];大连理工大学;2006年
7 董全杨;饱和砂土小应变动力特性试验研究[D];浙江大学;2014年
相关硕士学位论文 前10条
1 李沙沙;人工冻结饱和砂土条件下灌注桩承载力试验研究[D];河北工程大学;2015年
2 余正春;弱化饱和砂土对桩水平极限抗力的研究[D];天津大学;2007年
3 王桃桃;新型真三轴仪改进及饱和砂土力学特性测试分析[D];西安理工大学;2010年
4 高昌德;非饱和砂土力学特性研究及其与结构相互作用分析[D];湖南大学;2014年
5 李月;不排水剪切条件下饱和砂土变形特性及其本构模型的试验研究[D];大连理工大学;2004年
6 邓国华;饱和砂土物态动力固结有限元分析研究[D];西安理工大学;2005年
7 史海栋;不规则地震波作用下饱和砂土动力特性试验及简化算法[D];浙江大学;2011年
8 郑代靖;饱和砂土地层盾构隧道的地震动力响应分析[D];西南交通大学;2014年
9 杨依民;饱和砂土的三轴试验及地震液化分析研究[D];大连理工大学;2013年
10 丁浩;地震波作用下饱和砂土动力特性试验研究[D];浙江大学;2010年
,本文编号:2465550
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2465550.html