藏式古建筑木结构叠合梁—柱节点的受力性能研究
发布时间:2020-10-16 20:08
古代建筑具有极高的历史、文化、艺术及科学价值,是世界文明的重要组成部分。古代建筑建造年代久远,在不利环境长时间的影响下,例如材料性能的退化以及地震、温度、腐蚀等外部作用,构件、结构的承载能力、稳定性和安全性均会下降,结构安全受到威胁。现存中国古建筑木结构有一类常见的梁柱节点,这类节点是由水平构件层层叠摞而成,通过木销定位,以抵抗竖向荷载作用。梁柱节点的刚度是古建筑木结构分析的重要参数,体现了节点抵抗变形的能力。现阶段,在荷载作用下,尤其在地震作用下,这类节点的力学性能尚不明确。因此,有必要构建这类节点的有限元模型,以便用于评估古代建筑在荷载作用下的力学性能。本文研究了中国古建筑木结构叠合梁-柱节点有限元模型在拟静力荷载作用的力学性能,主要的工作成果如下:参考西藏古建筑木结构梁柱节点的结构特点,考虑到节点任意两层水平构件之间的构造相同,从梁柱节点中选取两层水平构件简化为双层悬臂梁体系,分别基于Euler-Bernoulli梁理论和Timoshenko梁理论建立其解析模型。由于双层悬臂梁模型在荷载作用下接触面连接件(暗销)处可能发生一定范围的滑移,该解析模型考虑了接触面上摩擦-滑移-暗销剪切的影响,并根据两层梁之间的摩擦状态和暗销受剪切情况分为4种变形情况。建立的解析模型可用于评估双层木梁的刚度,并且,暗销的滑移-剪切力学性能对于研究双层梁体系的力学机理具有重大的意义。推导了均布荷载作用在梁上部的双层梁体系等效梁单元模型。根据有限元理论,等效梁单元是由上述双层悬臂梁解析模型在不同荷载作用下的变形推导得到。得到等效梁单元的方法由传统Euler-Bernoulli梁单元进行验证。通过该方法可以不通过试验直接得到具有不同几何、材料参数的双层梁体系。将上述的双层梁等效梁单元模型扩展为求解中国古建筑木结构中含有三层水平构件的梁柱节点有限元模型。对于三层梁体系,可认为由多个双层梁模型组成,此时即可利用双层梁等效梁单元模型进行求解。利用拆分前、后水平构件在相同荷载作用下的应变能和变形分别相等的原则,验证了该方法。再根据梁柱节点结构对称性,由含三层构件梁体系模型扩展得到该类木结构梁柱节点的有限元模型。节点模型具有接触面上摩擦-滑移-剪切的高度非线性特点。最后,研究了含三层构件梁柱节点的木框架在拟静力荷载作用下的变形响应,以便评估古建筑木结构的力学性能和耗能能力。本文提出的含三层构件梁柱节点有限元模型的构建方法具有普遍性,可得到含多层构件梁体系的有限元模型。另外,各类模型均分别基于Euler-Bernoulli和Timoshenko梁理论研究的,由此可应用至不同跨高比构件的结构分析中。因此,本文研究的模型具有较好的实用性和推广价值。
【学位单位】:北京交通大学
【学位级别】:博士
【学位年份】:2018
【中图分类】:TU366.2
【文章目录】:
Acknowledgement
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Background
1.2 Literature review
1.2.1 Numerical model of heritage wooden structure
1.2.2 Beam-column joint in heritage wooden structure
1.2.3 The two-layer beam system
1.3 Major contributions
1.4 Layout of the thesis
Chapter 2 Nonlinear Analytical Model of a Two-layer Euler Wooden Beam
2.1 Introduction
2.2 Proposed two-layer beam system based on Euler beam theory
2.2.1 Fully Sticky Stage
2.2.2 The Slip Stage
2.3 Performance of the two-layer cantilever beam under pseudo-staticload
2.3.1 Case 1 under transverse point load
2.3.2 Case 2 under bending moment
2.3.3 Case 3 The hysteretic loop
2.4 Summary
Chapter 3 Nonlinear Analytical Model of a Two-layer Timoshenko Wooden Beam
3.1 Introduction
3.2 Proposed two-layer beam system based on Timoshenko beam theory
3.2.1 Fully Sticky Stage
3.2.2 The Slip Stage
3.3 Performance of the two-layer cantilever beam under pseudo-static load
3.3.1 Case 1 under transverse point load
3.3.2 Case 2 under bending moment
3.3.3 Case 3 The hysteretic loop
3.4 Summary
Chapter 4 Finite Element Model of the Two-layer Wooden Beam
4.1 Introduction
4.2 Proposed two-layer beam finite element model
4.2.1 The analytical model with fixed left end
4.2.2 The analytical model with fixed right end
4.3 Performance of a cantilevered two-layer beam finite element modelunder pseudo-static load
4.4 Summary
Chapter 5 Finite Element Model of a Three-layer Beam-Column Joint
5.1 Introduction
5.2 Proposed finite element model of three-layer joint
5.3 Verification of the modeling process
5.3.1 The axial strain energy of Beam b under axial load
5.3.2 The strain energy of Beam b under vertical load
5.3.3 The strain energy of Beam b under bending moment
5.3.4 Conclusion
5.4 Performance of a cantilevered three-layer beam under pseudo-staticload
5.5 Performance of a frame with three-layer beam-column FEM under pseudo-static load
5.6 Summary
Chapter 6 Conclusions and Recommendations
6.1 Conclusions
6.2 Recommendations
References
作者简历及攻读硕士/博士学位期间取得的研究成果
学位论文数据集
【引证文献】
本文编号:2843718
【学位单位】:北京交通大学
【学位级别】:博士
【学位年份】:2018
【中图分类】:TU366.2
【文章目录】:
Acknowledgement
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Background
1.2 Literature review
1.2.1 Numerical model of heritage wooden structure
1.2.2 Beam-column joint in heritage wooden structure
1.2.3 The two-layer beam system
1.3 Major contributions
1.4 Layout of the thesis
Chapter 2 Nonlinear Analytical Model of a Two-layer Euler Wooden Beam
2.1 Introduction
2.2 Proposed two-layer beam system based on Euler beam theory
2.2.1 Fully Sticky Stage
2.2.2 The Slip Stage
2.3 Performance of the two-layer cantilever beam under pseudo-staticload
2.3.1 Case 1 under transverse point load
2.3.2 Case 2 under bending moment
2.3.3 Case 3 The hysteretic loop
2.4 Summary
Chapter 3 Nonlinear Analytical Model of a Two-layer Timoshenko Wooden Beam
3.1 Introduction
3.2 Proposed two-layer beam system based on Timoshenko beam theory
3.2.1 Fully Sticky Stage
3.2.2 The Slip Stage
3.3 Performance of the two-layer cantilever beam under pseudo-static load
3.3.1 Case 1 under transverse point load
3.3.2 Case 2 under bending moment
3.3.3 Case 3 The hysteretic loop
3.4 Summary
Chapter 4 Finite Element Model of the Two-layer Wooden Beam
4.1 Introduction
4.2 Proposed two-layer beam finite element model
4.2.1 The analytical model with fixed left end
4.2.2 The analytical model with fixed right end
4.3 Performance of a cantilevered two-layer beam finite element modelunder pseudo-static load
4.4 Summary
Chapter 5 Finite Element Model of a Three-layer Beam-Column Joint
5.1 Introduction
5.2 Proposed finite element model of three-layer joint
5.3 Verification of the modeling process
5.3.1 The axial strain energy of Beam b under axial load
5.3.2 The strain energy of Beam b under vertical load
5.3.3 The strain energy of Beam b under bending moment
5.3.4 Conclusion
5.4 Performance of a cantilevered three-layer beam under pseudo-staticload
5.5 Performance of a frame with three-layer beam-column FEM under pseudo-static load
5.6 Summary
Chapter 6 Conclusions and Recommendations
6.1 Conclusions
6.2 Recommendations
References
作者简历及攻读硕士/博士学位期间取得的研究成果
学位论文数据集
【引证文献】
相关博士学位论文 前1条
1 贺俊筱;古建筑木结构关键节点及构架受力性能研究[D];北京交通大学;2019年
本文编号:2843718
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/2843718.html