客运专线客运量预测方法研究
本文选题:旅客运输 切入点:客运专线 出处:《中南大学》2012年硕士论文 论文类型:学位论文
【摘要】:自1964年,日本开通世界上第一条高速铁路——东海道新干线以来,高速铁路凭借其能力大、速度快、安全性高、正点率高等优势,在世界范围内取得迅猛发展。为加快我国铁路发展、增强铁路客运竞争能力以及缓解既有铁路的运输压力,我国制定了《中长期铁路网规划》和《中长期铁路网规划(2008年调整)》,根据规划内容,我国已进入客运专线的快速发展时期。 随着我国运输通道内客运专线的大规模建设和相继投入运营,运输通道的运输格局和结构发生了变化,运输通道的客运市场被重新划分。同时,客运专线客运量不仅是建设项目投资决策的重要依据,又是制定旅客列车开行方案、运营组织模式和客运营销策略的主要参考。因此,如何根据现有运输通道的数据,寻求一套科学的面向整个运输通道的客运专线客运量预测方法显得尤为必要。 本文首先阐述客运专线客运量预测的研究意义、主要内容和技术路线,对国内外铁路客运量的预测方法进行详细的介绍和分析,并根据各种预测方法的优势和劣势,提出基于改进四阶段法的客运专线客运量预测方法。接着,对运输通道客运量的影响因素进行定性分析和定量计算,选出影响运输通道客运量的主要因素。然后,从运输通道客运量的形成机理出发,将运输通道客运量分为运输通道趋势客运量和运输通道诱增客运量,分别设计和构造BP神经网络模型和诱增客运量模型对它们进行预测,并汇总得到运输通道的总客运量。随后,建立时间价值模型,利用旅客的广义出行费用和旅客单位时间价值的对数正态分布推算客运专线的客运分担率,以此预测客运专线的客运量。最后,对柳南客运专线进行实例分析,验证本文提出的客运专线客运量预测方法的合理性。
[Abstract]:Since 1964, when Japan opened the world's first high-speed railway, the Dongkaido Shinkansen, the high-speed railway has its advantages of large capacity, high speed, high safety, high punctuality and so on. In order to speed up the development of railway in China, strengthen the competition ability of railway passenger transport and relieve the pressure of existing railway transportation, China has formulated "medium and long term Railway Network Planning" and "medium and long term Railway Network Plan (2008 adjustment)". According to the contents of the plan, China has entered the period of rapid development of passenger dedicated line. With the large-scale construction and operation of passenger dedicated lines in transport channels in China, the transportation pattern and structure of transport channels have changed, and the passenger transport market of transport channels has been reclassified. Passenger volume of passenger dedicated line is not only the important basis for investment decision of construction project, but also the main reference for making passenger train operation plan, operation organization mode and passenger transportation marketing strategy. It is necessary to find a scientific method for forecasting passenger volume of passenger dedicated line. In this paper, the research significance, main content and technical route of passenger volume prediction for passenger dedicated line are introduced and analyzed in detail, and according to the advantages and disadvantages of various forecasting methods, the prediction methods of passenger volume are introduced and analyzed in detail. This paper puts forward a method of passenger volume prediction for passenger dedicated line based on the improved four-stage method. Then, qualitative analysis and quantitative calculation are carried out on the influencing factors of passenger volume in transportation channels, and the main factors affecting passenger volume in transportation channels are selected. Based on the formation mechanism of transport channel passenger volume, the transport channel passenger volume is divided into transport channel trend passenger volume and transport channel induced passenger volume. The BP neural network model and the induced passenger volume model are designed and constructed respectively to predict them. Then the time value model is established to calculate the passenger share rate of passenger dedicated line by using the generalized travel cost of passengers and the logarithmic normal distribution of passenger unit time value. Finally, a case study of Liunan passenger dedicated Line is carried out to verify the rationality of the passenger volume prediction method proposed in this paper.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:U293.13
【参考文献】
相关期刊论文 前10条
1 曹尧谦;李夏苗;;基于改进四阶段法的武广客运专线客流预测[J];铁道科学与工程学报;2010年03期
2 崔捷晴;;基于灰色预测法的铁路客运量预测[J];科技和产业;2007年08期
3 王晖,申少君;诱增交通量的变化规律和预测模型[J];公路交通科技;2003年03期
4 田丽;;基于灰色模型的铁路客流预测方法[J];中国管理信息化;2011年07期
5 赵黎明,王磐;交通网络规划中的出行费用研究[J];河北工业大学学报;2003年06期
6 张和生;张毅;温慧敏;胡东成;;利用GPS数据估计路段的平均行程时间[J];吉林大学学报(工学版);2007年03期
7 朱大奇;人工神经网络研究现状及其展望[J];江南大学学报;2004年01期
8 霍娅敏,李德刚;成都市公路客运量预测[J];交通标准化;2005年11期
9 赵军;;基于动态灰色马尔柯夫链的铁路运量预测[J];交通运输工程与信息学报;2009年02期
10 张天然;杨东援;叶亮;王权;;应用Mixed Logit模型估计非同质旅行时间价值[J];交通与计算机;2007年03期
相关硕士学位论文 前5条
1 王方;基于SP调查的行为时间价值研究[D];北京工业大学;2005年
2 程万斌;沪宁城际铁路客流预测研究[D];西南交通大学;2006年
3 刘晓锋;厦深城际轨道交通客流预测研究[D];武汉理工大学;2006年
4 姜伟;广东西部沿海铁路客运量预测研究[D];武汉理工大学;2008年
5 王彦明;长白山机场建设对吉林省道路运输量影响研究[D];吉林大学;2009年
,本文编号:1556301
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/1556301.html