当前位置:主页 > 经济论文 > 交通经济论文 >

基于网络分析方法的沪昆高铁对江西省沿线城市中心性影响研究

发布时间:2018-06-03 20:00

  本文选题:网络 + 沪昆高铁 ; 参考:《江西师范大学》2017年硕士论文


【摘要】:城市的发展与交通运输网络息息相关,高铁作为交通行业革命性的运输工具,它的开通不仅改变了空间的通达性和城市之间的联系,而且推动了沿线城市交通网络结构的演变。理解城市在网络中的地位,分析高铁网络与城市中心性的关系,有助于优化交通网络布局及促进城市发展。本研究以沪昆高铁为例,以江西省11个沿线城市为研究对象,首先基于最短交通时间计算普铁与高铁网络下城市的邻近性,对比分析沪昆高铁对江西省沿线城市邻近性的影响;其次通过网络分析工具计算高铁有无情境下城市的中介性,分析沪昆高铁对江西省沿线城市中介性的影响程度。研究结果表明:(1)高铁与普铁网络下的邻近性比较中,沪昆高铁网络下江西段11个沿线城市的邻近性有较大的提高,各城市加强了与其他城市的空间联系,但邻近性的差距也在拉大,南昌市、鹰潭市、抚州市处于交通网络的中心区域,邻近性较高,具备良好的区位优势。各城市的邻近性变化率中,南昌市、抚州市的变化率较高,分别为226%与180%;鹰潭市的变化率最低,为120%。与普铁网络下的邻近性相比,沪昆高铁网络下的鹰潭市邻近中心地位显著下降。(2)有高铁与无高铁网络下的城市中介性相差不明显,但11个沿线城市的中介性相差显著,南昌市处于绝对的交通枢纽地位,鹰潭市、上饶市稍弱。从中介性的变化程度上看,变化率较高的城市为玉山县、弋阳县,分别为0.5%与0.35%。较低的城市为南昌市、新余市,变化率均在0.04%以下。南昌市与鹰潭市的交通网络密集,相比交通网络较稀疏的弋阳县、玉山县,中介性变化率要低。从空间分布上看,沪昆高铁江西段的东部城市比西部城市的中介性变化率更高。(3)沪昆高铁网络下11个沿线城市的邻近性与中介性相关性较低,反映了两个中心性指标衡量了城市在网络中的不同特点,邻近性反映了一个城市到其他城市的便捷程度,邻近性高的城市表明在交通网络中占有区位优势;中介性衡量了一个城市交通网络的中转的能力,高的中介性表明该城市是重要的交通枢纽,南昌市与鹰潭市在两种中心性指标中占有明显优势。
[Abstract]:The development of the city is closely related to the transportation network. As a revolutionary means of transportation, the opening of high-speed rail not only changes the accessibility of space and the relationship between cities, but also promotes the evolution of urban traffic network structure along the line. Understanding the status of the city in the network and analyzing the relationship between the high-speed rail network and the city-center will help to optimize the distribution of the traffic network and promote the development of the city. This study takes Shanghai-Kunming high-speed railway as an example, and takes 11 cities along Jiangxi Province as the research object. Firstly, based on the shortest traffic time, the proximity of cities under the common railway and high-speed rail network is calculated, and the influence of Shanghai-Kunming high-speed rail on the proximity of cities along Jiangxi Province is compared and analyzed. Secondly, the network analysis tools are used to calculate the urban intermediation in the context of high-speed rail, and to analyze the influence of Shanghai-Kunming high-speed rail on the intermediary nature of cities along Jiangxi Province. The results show that the proximity of 11 cities along the Jiangxi section under the Shanghai-Kunming high-speed rail network has been greatly improved compared with the proximity of the common rail network, and each city has strengthened its spatial links with other cities. However, the gap of proximity is also widening. Nanchang, Yingtan and Fuzhou are in the center of traffic network. Among the cities, Nanchang city and Fuzhou city have higher change rate, 226% and 180%, respectively, and Yingtan city has the lowest change rate (120g). Compared with the proximity under the ordinary railway network, the proximity of Yingtan city under the Shanghai-Kunming high-speed rail network has a significant decline. (2) there is no significant difference between the urban intermediation of the high-speed rail network and that of the city without the high-speed rail network, but there is a significant difference in the intermediation between the 11 cities along the railway line. Nanchang City is in an absolute transportation hub position, Yingtan City, Shangrao slightly weak. In terms of the degree of intermediary change, the cities with higher rate of change were Yushan County and Yiyang County, which were 0.5% and 0.35%, respectively. The lower cities are Nanchang city and Xinyu city, the change rate is below 0.04%. Compared with Yiyang county and Yushan county, the traffic network of Nanchang city and Yingtan city is dense, and the rate of intermediary change is lower than that of Yiyang county and Yushan county. From the spatial distribution point of view, the intermediary change rate of the eastern cities in the Jiangxi section of the Shanghai-Kunming high-speed railway is higher than that of the western cities.) the proximity and the intermediation of the 11 cities along the Shanghai-Kunming high-speed railway network are lower than those of the western cities. It reflects two central indicators to measure the different characteristics of the city in the network, proximity reflects the convenience of one city to other cities, and the city with high proximity shows the location advantage in the traffic network. Intermediary measures the ability of transit of a city's traffic network. The high intermediation indicates that the city is an important transportation hub. Nanchang city and Yingtan city have obvious advantages in the two kinds of central indexes.
【学位授予单位】:江西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F532.8;F299.27

【参考文献】

相关期刊论文 前10条

1 金凤君;焦敬娟;齐元静;;东亚高速铁路网络的发展演化与地理效应评价[J];地理学报;2016年04期

2 王亦军;;中国高速铁路建设回顾与发展思考[J];铁道经济研究;2016年01期

3 曾光;;高铁对区域经济发展的影响及应对——以江西为例[J];城市;2015年08期

4 邓木生;;沪昆高速铁路对湖南沿线区域交通运输的影响[J];中外企业家;2015年02期

5 陈晨;修春亮;;基于交通网络中心性的长春市大型综合医院空间可达性研究[J];人文地理;2014年05期

6 肖扬;Alain Chiaradia;宋小冬;;空间句法在城市规划中应用的局限性及改善和扩展途径[J];城市规划学刊;2014年05期

7 陈晨;程林;修春亮;;沈阳市中心城区交通网络中心性及其与第三产业经济密度空间分布的关系[J];地理科学进展;2013年11期

8 马颖;;当前对发展高铁经济的再思考[J];湖北经济学院学报(人文社会科学版);2011年11期

9 钟业喜;陆玉麒;;基于铁路网络的中国城市等级体系与分布格局[J];地理研究;2011年05期

10 李平;王宏伟;;大型建设项目区域经济影响评价理论基础及其评价体系[J];中国社会科学院研究生院学报;2011年02期

相关重要报纸文章 前1条

1 齐慧;;我国“四纵四横”高铁网基本成型[N];经济日报;2016年

相关博士学位论文 前1条

1 陶思宇;客运专线网络旅客列车开行方案优化设计与调整研究[D];西南交通大学;2012年

相关硕士学位论文 前10条

1 吴德馨;基于复杂网络理论的铁路运营网络中心性分析[D];北京交通大学;2015年

2 耿筱丹;高速铁路对城市吸引力影响差异研究[D];北京交通大学;2015年

3 张治伟;城市轨道交通网络拓扑建模及其动力学分析[D];东华大学;2014年

4 李刚;基于网络中心性的城市轨道交通应急救援站选址研究[D];北京交通大学;2014年

5 吴焱林;环鄱阳湖城镇群经济联系的空间结构研究[D];南京师范大学;2013年

6 郭竹学;沪昆高铁对江西区域经济影响研究[D];北京交通大学;2012年

7 孙健韬;高速铁路对区域经济的影响分析[D];北京交通大学;2012年

8 李瑞霞;高速铁路对铁路运输通道体系作用评价[D];北京交通大学;2012年

9 张强锋;城际客运专线列车开行方案研究[D];西南交通大学;2010年

10 王守宝;铁路高速客运专线运输组织及运行图仿真研究[D];兰州交通大学;2008年



本文编号:1973998

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/1973998.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户da901***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com