航空货运舱位存量控制方法研究
发布时间:2018-06-24 08:34
本文选题:收益管理 + 货运舱位存量控制 ; 参考:《南京航空航天大学》2013年硕士论文
【摘要】:在国际贸易快速增长、全球一体化进程不断深化的大环境下,我国民航货运行业获得蓬勃发展。国家“天空开放”政策的推动给我国民航企业的货运部门创造了巨大的发展良机,同时也使其面临着严峻的挑战。那么,如何提升民航企业货运部门管理水平,增加营业收入,成为了我国航空公司亟待解决的重要课题。 本文在充分借鉴国内外航空货运收益管理相关研究成果的前提下,着重研究我国航空货运的舱位存量控制方法。文章的主要内容如下: 首先在充分研究灰色模型和多元回归模型优缺点的基础上,将二者分别基于最小二乘原理及有效度原理,进行组合建立了两种灰色多元回归模型,并将其应用于我国货运吞吐量的预测。 其次,在研究航空货运产品特性和航空公司货运实际销售流程的基础上,研究了货运舱位销售合同对航空货运收益的影响,建立了以航空公司利润最大化为目标的舱位存量控制模型,针对模型中舱位需求的不确定性,采用随机机会约束方法对其进行求解,,确定了航空公司舱位分配策略。通过算例分析,表明航空公司与协议客户签订舱位销售合同,可以更加准确的掌握市场需求信息,增加货运收益。 最后,本文通过研究发现代理人与航空公司签订协议时通常倾向于签订市场区域的一揽子协议,针对市场需求的这一特征,航空公司需要考虑在一个区域上协议销售的货运舱位如何在各个代理人之间进行分配。以往收益管理的目标只有一个,即收益最大,但是在实践中,决策者往往要考虑多个目标的实现。由此,本文建立了一个考虑销售收入、销售舱位数目和客户关系管理这三个指标的多目标规划模型,利用“序贯算法”结合LINGO软件对模型进行了求解,通过算例分析,验证了模型的有效性,为航空公司货运舱位存量控制提供了一种新的方法。 后面两个舱位存量控制的模型均在符合配载要求的情况下,选取了收益最大的舱位控制方案,以此来增加航空公司收益。通过算例分析来验证模型的有效性,为航空公司提供更为科学的舱位存量控制方法。
[Abstract]:With the rapid growth of international trade and the deepening of the process of global integration, China's civil aviation freight industry has developed vigorously. The promotion of China's "Sky opening" policy has created a great opportunity for the development of the freight transport sector of China's civil aviation enterprises, and at the same time has made it face severe challenges. Therefore, how to improve the management level and increase the operating income of civil aviation enterprises has become an important issue to be solved urgently by Chinese airlines. Based on the research results of domestic and foreign air cargo revenue management, this paper focuses on the control method of air cargo space stock in China. The main contents of this paper are as follows: firstly, on the basis of studying the advantages and disadvantages of grey model and multivariate regression model, the two models are based on the least square principle and the validity principle, respectively. Two grey multivariate regression models are established and applied to the prediction of freight throughput in China. Secondly, on the basis of studying the characteristics of air cargo products and the actual sales process of air cargo, the influence of cargo space sales contract on air cargo revenue is studied. A space inventory control model with the aim of maximizing the profit of airlines is established. In view of the uncertainty of space demand in the model, the stochastic opportunity constraint method is used to solve the problem, and the allocation strategy of space is determined. Through the example analysis, it shows that the airline and the agreement customer sign the cabin space sale contract, can grasp the market demand information more accurately, increases the freight transport income. Finally, through the research, we find that when the agent signs the agreement with the airline, he usually tends to sign the package agreement in the market area, aiming at this characteristic of the market demand. Airlines need to consider how cargo space agreed to be sold in a region is allocated among agents. In the past, there was only one goal of revenue management, that is, the maximum revenue, but in practice, decision makers often consider the realization of multiple objectives. Therefore, this paper establishes a multi-objective programming model which considers the sales revenue, the number of space and the customer relationship management. The model is solved by "sequential algorithm" and lingo software. The validity of the model is verified and a new method for cargo space inventory control of airlines is provided. The latter two models of space inventory control are in accordance with the requirements of stowage, and select the most profitable cabin space control scheme to increase the airline revenue. The validity of the model is verified by the example analysis, which provides a more scientific method for the control of space stock for airlines.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F562.1
【参考文献】
相关期刊论文 前10条
1 洪文;利用LINDO求解目标规划[J];安徽大学学报(自然科学版);2001年02期
2 刘军,邱菀华;航空客运收益管理的结构模型[J];北京航空航天大学学报(社会科学版);2000年04期
3 康锦江,张玉庆,陈静;航空收益管理及对中国企业的启示[J];东北大学学报(社会科学版);2003年06期
4 陈淑燕,王炜;交通量的灰色神经网络预测方法[J];东南大学学报(自然科学版);2004年04期
5 周晶;杨慧;;解析收益管理的核心观点[J];经济管理;2008年14期
6 王婷;罗利;;航空货运多航段多阶段模型[J];交通运输工程与信息学报;2007年04期
7 林小平;袁捷;;基于灰色模型的成都双流机场物流预测[J];武汉理工大学学报(交通科学与工程版);2007年03期
8 文军;;基于灰色马尔可夫链模型的航空货运量预测研究[J];武汉理工大学学报(交通科学与工程版);2010年04期
9 唐颖昭;;国际航空货运公司的中国货运枢纽战略及影响分析[J];交通与运输;2008年02期
10 汪瑜;孙宏;;竞争环境下航班舱位控制博弈模型[J];交通运输工程学报;2009年03期
本文编号:2060835
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/2060835.html