基于灰色组合模型的福建省港口集装箱吞吐量预测研究
[Abstract]:Container logistics, as an important part of port logistics, is one of the symbols to measure the status of ports in international trade. The prediction of container throughput is also an important part of port development strategy research. As an important part of the national ports, the coastal ports of Fujian Province play an important role in the national comprehensive transportation system and the trade and transportation to Taiwan. With the construction of the economic zone on the west side of the Taiwan Strait and the realization of the "three links" between the two sides, the port development of Fujian Province will face great opportunities. At present, due to the rapid development of port hinterland economy in Fujian Province and the influence of macroeconomic policies and domestic and foreign macroeconomic factors, there is still a certain gap between the results of port container throughput prediction and the actual situation. It is under this background that this paper puts forward a more accurate prediction of container throughput in Fujian port and provides a theoretical basis for container transportation planning and construction. Firstly, the theory and method of container throughput prediction are summarized, and the application status of grey model and its combination model in port container throughput prediction is described. In view of the uncertainty of the influencing factors of port container throughput and its complex relationship, the law and characteristics of port container throughput data are fully analyzed in the early stage of prediction, and the forecasting method system of port container throughput is established. Secondly, the problems existing in the modeling of GM (1K1) model and its improved method are analyzed. A particle swarm optimization method is proposed to optimize the background value and initial value of the GM (1K1) model. Then the linear regression model and the PSO optimization grey GM (1K1) model are combined. The grey linear combination prediction model is established. The combined model is applied to the forecasting of container throughput in Fujian port, and compared with the forecasting result of single forecasting model. The results show that the forecasting result of the combined model is reasonable. Finally, some suggestions are put forward for Fujian Province to develop container logistics.
【学位授予单位】:福建农林大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:F552.7;F224;U695.22
【参考文献】
相关期刊论文 前10条
1 邹长武;羊依金;丁恒康;张雪乔;;基于粒子群算法的GM(1,1)在经济发展预测中的应用[J];成都信息工程学院学报;2007年03期
2 杨胡萍;毕志鹏;;粒子群优化的灰色模型在中长期负荷预测中的应用[J];电测与仪表;2011年02期
3 冯春山,吴家春,蒋馥;定性预测与定量预测的综合运用研究[J];东华大学学报(自然科学版);2004年03期
4 赵学敏;吴泽宁;赵春娜;卢红卫;;基于粒子群算法求解GM(1,1)模型参数的研究[J];华北水利水电学院学报;2007年03期
5 兰培真;Logistic曲线Fuzzy预测法在港口吞吐量预测中的应用[J];集美航海学院学报;1996年03期
6 童明荣;薛恒新;林琳;;基于最优组合预测模型的港口集装箱吞吐量预测[J];技术经济;2006年12期
7 杨神化,关克平;Spreadsheet方法在港口吞吐量预测中的运用[J];武汉理工大学学报(交通科学与工程版);2005年05期
8 卢少华;;遗传规划在港口吞吐量预测中的应用[J];武汉理工大学学报(交通科学与工程版);2006年03期
9 张萍;严以新;许长新;;港口吞吐量预测的系统动力学模型构建[J];武汉理工大学学报(交通科学与工程版);2006年06期
10 吴建生,秦发金;基于MATLAB的粒子群优化算法程序设计[J];柳州师专学报;2005年04期
相关硕士学位论文 前2条
1 潘文军;基于智能的港口物流预测系统的研究与应用[D];武汉理工大学;2004年
2 王小忠;物流量预测方法研究[D];武汉理工大学;2005年
本文编号:2276548
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/2276548.html