遗传算法在多式联运路径优化的应用
[Abstract]:Multimodal transport in our country refers to the process of connecting two or more modes of transport through transshipment, so as to deliver the goods from the starting point to the destination. By using multimodal transport, the advantages and disadvantages of various modes of transport can be fully utilized, and the seamless connection between transport time and space can be realized. The route optimization of multimodal transport should not only consider time and cost, but also consider the connection of transportation mode, the risk and loss of transshipment, the quality of transportation, the level of service and so on. These indexes of different modes of transport are different, so multimodal transport is a very complex system. In this paper, the model of multimodal transport with time window is studied, and the influence of transportation frequency on transport time is introduced. The optimization model of multimodal transport with transportation frequency as parameter is established. A genetic algorithm based on Pareto optimization is used to solve multiple objectives of the model simultaneously. The research contents are as follows: (1) analyze the development of multimodal transport in China and domestic and foreign research status, summarize and sort out the relevant literature, the research direction is divided into the operation management research and the network cargo flow planning research. The network cargo flow planning includes the combination of route optimization and transportation mode. This paper studies and discusses the network cargo flow planning. Through the research to find out the research direction and the strategy that should be adopted in the multimodal transport according to the situation of our country. (2) taking the lowest cost, the minimum time and the minimum carbon emission as the goal to establish the multimodal transport model, the model considers the time factor, establishes the time window, Punish both early and late arrival at the target node. Then considering the limitation of each node's transportation mode, the alternative set is added as the constraint condition, and the waiting time is set according to the shift. (3) the concrete operation steps of the model are set by genetic algorithm based on Pareto. The data are brought in, solved step by step, and compared with the model using only time window. By modifying the departure time of the goods in the model, the effect of the model on the result is studied.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;F512.4
【参考文献】
相关期刊论文 前10条
1 辛春林;冯倩茹;张建文;;时变条件下多式联运危险品路径优化研究[J];中国安全科学学报;2016年06期
2 梁晓磊;李文锋;张煜;;一种求解带约束多式联运问题的群智能算法[J];上海交通大学学报;2015年08期
3 刘丹;赵嵩正;;可持续多式联运网络设计的多目标优化模型及算法[J];系统工程;2015年08期
4 赵昕;聂婷婷;沈诗语;;我国多式联运存在问题及发展对策研究[J];中国物流与采购;2015年14期
5 雷定猷;游伟;张英贵;皮志东;;长大货物多式联运路径优化模型与算法[J];交通运输工程学报;2014年01期
6 张哲辉;;多式联运助力现代物流发展的对策研究[J];综合运输;2014年01期
7 孙彬;陈秋双;;基于多Agent的多式联运运输决策与动态协调[J];计算机集成制造系统;2013年12期
8 陈丹丹;洪卫;贾禹;;面向随机因素的多式联运动态路径优化[J];重庆交通大学学报(自然科学版);2015年02期
9 朱昌锋;王庆荣;;多式联运条件下应急车辆径路优化研究[J];统计与决策;2013年18期
10 王鑫磊;刘耀彬;;基于交通运输成本的环鄱阳湖区“轴-辐”物流网络构建研究[J];长江流域资源与环境;2013年07期
相关博士学位论文 前4条
1 潘常虹;集装箱多式联运系统仿真及优化方法研究[D];大连海事大学;2015年
2 蒋洋;多式联运服务网络优化建模方法研究[D];北京交通大学;2014年
3 熊桂武;带时间窗的多式联运运输优化研究[D];重庆大学;2014年
4 孙彬;多式联运供应链的协调与协同优化研究[D];南开大学;2013年
相关硕士学位论文 前4条
1 杨江波;面向固定运输班次的集装箱多式联运路径选择研究[D];重庆大学;2012年
2 王金华;基于运输合理化的多式联运路径优化[D];上海交通大学;2010年
3 吕凯;面向多式联运的运输优化研究[D];北京交通大学;2008年
4 郭保春;集装箱多式联运内陆环节优化研究[D];上海海事大学;2007年
,本文编号:2304347
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/2304347.html