当前位置:主页 > 经济论文 > 区域经济论文 >

关中城市群道路移动源污染物排放清单与减排策略研究

发布时间:2018-01-10 15:26

  本文关键词:关中城市群道路移动源污染物排放清单与减排策略研究 出处:《长安大学》2016年博士论文 论文类型:学位论文


  更多相关文章: 关中城市群 道路移动源 MOVES模型 排放清单 非常规污染物 光化学烟雾 减排策略


【摘要】:近年来,关中地区因日趋严重的大气污染被纳入国家大气污染重点防治区域“三区十群”。机动车排放对以西安、宝鸡、铜川、咸阳(含杨凌)和渭南为中心的区域内大气污染的贡献愈发显著并严重影响该区域的经济可持续发展和居民健康。另一方面,机动车排放的氨(NH_3)、挥发性有机化合物(VOCs)、甲醛(HCHO)、丙烯醛(C_3H_4O)、苯(C_6H_6)等非常规污染物是城市光化学烟雾和大气二次气溶胶的重要前体物,会对环境和人体健康产生更大的危害,但尚未引起足够重视。目前,机动车排放非常规污染物、颗粒物的高时空分辨率清单仍然空白,导致减排策略缺乏技术支撑,已经影响到大气污染模式模拟的准确性和区域大气污染减排控制策略的针对性。因此,本论文对关中城市群道路移动源污染物的高时空分辨率排放清单进行了研究,以此对污染减排控制策略效果进行评估。主要研究内容如下:(1)使用MOVES模型研究机动车常规污染物、非常规污染物和燃油颗粒物、刹车及轮胎磨损颗粒物的排放因子,模型参数针对关中地区进行本地化修正;使用AP-42模型研究关中交通扬尘颗粒物排放因子。本文以2012年为基准年建立关中城市群道路移动源污染物年排放总量清单。结果如下:a.常规污染物排放量如下:一氧化碳(CO)为45.40万吨,氮氧化物(NO_x)为8.190万吨,二氧化硫(SO_2)为0.420万吨;b.非常规污染物排放量如下:总有机气体(TOG)为4.30万吨、VOCs为4.10万吨、甲烷(CH_4)为0.123万吨、甲醛为0.057万吨、乙醛为0.027万吨、丙烯醛为0.004万吨、1,3-丁二烯(C_4H_6)为0.012万吨、苯为0.090万吨,NH_3的年排放量为0.10万吨;c.燃油排放颗粒物0.716万吨,其中PM2.5占48.77%;d.刹车排放颗粒物0.199万吨,其中PM2.5占20.55%;e.轮胎磨损排放颗粒物0.042万吨,其中PM2.5占18.75%;f.交通扬尘排放PM2.5为5.440万吨、PM10为22.480万吨。研究表明交通扬尘PM年排放量显著高于机动车PM年排放量。关中城市群道路移动源排放城市分担率从高至低依次为西安(~50%),渭南(~23%),咸阳(含杨凌)(~12%)、宝鸡(~10%)和铜川(~5%)。各车型污染物排放分担率差异显著,燃油PM2.5、PM10和NO_x排放以重型货车(分别为33.1%、33.61%和33.85%)和中型货车(分别为21.76%、19.81%和21.21%)为主;刹车和轮胎磨损PM2.5排放以小客车(分别为32.52%和43.33%)和重型货车(分别为32.05%和20.08%)为主;SO_2、醛类物质的重型货车分担率高,分别为~31.31%和~30%;CO、VOCs、1,3-丁二烯、苯和甲烷的排放以小客车(分别为32.86%、17.58%、26.64%、26.45%和38.85%)和摩托车(分别为32.64%、55.67%、43.29%、49.04%和30.97%)为主;NH_3的小客车和重型货车排放分担率分别达到49.5%和31.31%。(2)结合GIS技术,利用主干道线源分配方法对西安市高速路、非高速路、快速路和非快速路4类主干道的道路移动源时空分配进行研究,分析污染物的时空分布特征。研究表明:a.线源污染物排放变化规律与日车流量变化一致,表现为大部分线源在12点的污染物排放量明显高于凌晨1点,仅交通流量饱和的市区道路和南北货运通道的小时变异性不明显;b.线源排放呈现工作日排放量大于周末排放量;c.市区范围内的单条线源污染物排放强度总体低于郊区,研究分配的高污染排放线源时空分布情况与实际道路污染特征吻合良好。(3)采用面源路网“标准道路长度”权重因子法,对关中道路移动源面源网格排放的时空分配进行研究。本论文分析了NO_x、VOCs、NH_3、甲醛等二次气溶胶和光化学烟雾前体物的3×3km分辨率空间分布,并针对机动车污染严重的西安市建立了1×1km的高分辨率空间分布,以此分析面源网格排放的时空分布规律。研究表明:机动车面源网格排放呈现“线-面”特征,形成以西安、咸阳(含杨凌)和渭南城区为核心的污染物高排放区域,在这些区域内NO_x、VOCs等前体物排放强度高(50吨/年),光化学烟雾污染形成潜势大,向外延伸排放水平逐渐降低,最低强度小于5吨/年;工作日各城市机动车直接排放量较周末高5%左右,其中宝鸡市最明显;面源网格分辨率越高机动车污染排放与地区道路网的分布愈吻合,但模拟分配速度会明显下降。(4)利用MOVES模型对关中地区分别实施提高油品质量、淘汰黄标车、使用替代燃料、车辆限行等4种污染物减排策略进行效果评估。模型分析表明:提高燃油质量(国V燃油替代国Ⅲ燃油)对SO_2、CO、甲烷和苯等污染物减排效果明显,年减排量分别达到3.472万吨、121.993万吨、0.260万吨和0.215万吨,NH_3排放没有变化,小客车和摩托车各类污染物削减率高;淘汰黄标车后燃油排放颗粒物、VOCs、甲醛、苯等污染物削减率较高,在7.99%-23.43%;天然气作为替代燃料后大型汽油客车NH_3、SO_2、VOCs、甲醛和小客车VOCs等有机污染物实现零排放,大型柴油客车的PM2.5减排95%,但总烃(THC)和CO排放增加;交通限行后燃油排放PM、VOCs、甲烷、甲醛、苯等污染物减排效果显著,在8.51%-20.41%,货车污染物排放削减率总体高于客车类。针对减排的目标污染物不同,合理组合减排策略可以提高整体减排效果。
[Abstract]:In recent years, because of the serious air pollution in Guanzhong area was included in the national air pollution prevention focus area "Three Zone ten group". On vehicle emissions in Xi'an, Baoji, Tongchuan, Xianyang (including Yangling) and Weinan as the center of the regional air pollution contribution is increasingly significant and seriously affect the sustainable development of the regional economy and the health of the residents. On the other hand, the emission of ammonia (NH_3), volatile organic compounds (VOCs), formaldehyde (HCHO), acrolein (C_3H_4O), benzene (C_6H_6) and other non conventional pollutants are important precursors of photochemical smog and atmospheric aerosols in the city two times, will have a greater harm to the environment and human health, but have not yet attracted enough attention. At present, motor vehicle emissions of unconventional pollutants, high spatial and temporal resolution list of particles is still blank, leading to reduction strategy of the lack of technical support, has affected the atmospheric pollution model The accuracy of regional air pollution emission reduction and control strategy in this paper. Therefore, Guanzhong City Group road mobile source pollutant emission inventory with high spatial and temporal resolution are studied, in order to assess the pollution reduction effect of control strategy. The main contents are as follows: (1) using the MOVES model of motor vehicle conventional pollutants, unconventional pollutants and fuel particles, brake and tire wear particle emission factor, the model parameters for Guanzhong area were studied using a AP-42 model localization correction; Guanzhong traffic dust particulate emission factor. The base year the establishment of Guanzhong City Group road mobile source emissions pollutants in the list to 2012. The results are as follows: A. conventional pollutant emissions are as follows carbon monoxide (CO) is 454 thousand tons, nitrogen oxide (NO_x) is 81 thousand and 900 tons, 4 thousand and 200 tons of sulfur dioxide (SO_2); B. unconventional. The discharge of pollutants are as follows: the total organic gas (TOG) is 43 thousand tons, 41 thousand tons VOCs, methane (CH_4) was 1 thousand and 230 tons, 570 tons of formaldehyde, acetaldehyde, acrolein is 270 tons, 40 tons, 1,3- butadiene (C_4H_6) for 120 tons of benzene, 900 tons, annual emissions of NH_3 1 thousand tons; C. fuel particle emissions of 7 thousand and 160 tons, which accounted for 48.77% of PM2.5; D. brake particle emission of 1 thousand and 990 tons, which accounted for 20.55% of PM2.5; e. tire wear particle emission of 420 tons, which accounted for 18.75% of PM2.5; f. PM2.5 traffic dust emissions 54 thousand and 400 tons, 224 thousand and 800 tons of PM10. The results show that the traffic dust PM motor vehicle emissions is significantly higher than the annual emissions of PM. Guanzhong City Group road mobile source emission city share rate from high to low in order for Xi'an (~50%), Weinan (~23%), Xianyang (including Yangling) (~12%), Baoji (~ 10%) and Tongchuan (~5%). The rate of poor share the various models of pollutant emission Significant, PM2.5 PM10 and NO_x emissions of fuel, with heavy trucks (respectively 33.1%, 33.61% and 33.85%) and medium truck (respectively 21.76%, 19.81% and 21.21%); the brake and tire wear PM2.5 emissions of small passenger cars (32.52% and 43.33%) and heavy truck (respectively 32.05% and 20.08%). SO_2, the high rate of share; aldehydes heavy trucks were ~31.31% and ~30%; CO, VOCs 1,3-, butadiene, benzene and methane emissions from passenger cars (respectively 32.86%, 17.58%, 26.64%, 26.45% and 38.85%) and motorcycles (32.64%, 55.67%, 43.29%, 49.04% and 30.97%); the rate of reached 49.5% and 31.31%. share NH_3 small passenger car and heavy truck emissions (2) combined with GIS technology, the high speed road of Xi'an city using the trunk line source distribution method, non high speed road, on road mobile sources of spatial and temporal distribution of Expressway and non Expressway 4 main road, pollution analysis The temporal and spatial distribution characteristics. The research results show: A. line source emission changes and daily traffic change is consistent, as most line source pollutant emissions in 12 was significantly higher than 1 in the morning, only the traffic flow saturation of urban roads and the North-South freight channel hour variability is not obvious; B. line source emission work on the weekend than emissions emissions; emission intensity is lower than the overall suburban single line pollutant source C. within the urban area, the distribution of high pollution emission line source spatial and temporal distribution characteristics of pollution are in good agreement with the actual road. (3) using the source network "standard road length" weight factor method, study the temporal and spatial distribution the mobile source emission source grid in Guanzhong road. This paper analyzes the NO_x, VOCs, NH_3, formaldehyde and other two aerosol and photochemical smog precursor 3 x 3km resolution spatial distribution, and for motor Car pollution of Xi'an city established a distribution of high spatial resolution of 1 x 1km, in order to analyze the temporal and spatial distribution of non-point source grid emissions. Research shows that the vehicle emission "non-point source grid line surface features, formed in Xi'an, Xianyang (including Yangling) pollutants as the core and Weinan city high emission area in these areas, NO_x, VOCs and other precursors of high emission intensity (50 tons / year), the photochemical smog formation potential, extending outward emission levels gradually decreased, the minimum strength of less than 5 tons / year; each working day city motor vehicle emissions compared to the weekend high about 5%, of which Baoji city is the most obvious; the distribution of road network the source of the higher resolution grid vehicle emission area is consistent, but the simulated distribution speed will be decreased obviously. (4) using the MOVES model to improve the quality of oil were implemented in Guanzhong area, eliminated yellow car, the use of alternative fuel The material, traffic restrictions and other 4 kinds of pollutant emission reduction strategies for impact assessment. The analysis shows that improving the quality of fuel (V fuel alternative country III fuel) on SO_2, CO, methane and benzene and other pollutants emission reduction effect, emission reduction reached 34 thousand and 720 tons, 1 million 219 thousand and 930 tons, 2 thousand and 600 tons and 2 thousand and 150 tons, NH_3 emissions no change, small passenger cars and motorcycles of various types of pollutant reduction rate is high; the elimination of yellow cars after the fuel particle emission, VOCs, formaldehyde, benzene and other pollutants reduction rate was higher in 7.99%-23.43%; natural gas as alternative fuel gasoline after large Airbus NH_3, SO_2, VOCs, formaldehyde and VOCs passenger cars and other organic pollutants to achieve zero emissions, large diesel passenger PM2.5 emission reduction of 95%, but the total hydrocarbon (THC) and increased CO emission; traffic limit line emission PM fuel, VOCs, methane, formaldehyde, benzene and other pollutants emission reduction effect is remarkable, in 8.51%-20.41%, the truck pollutant emission reduction rate The overall emission reduction strategy can improve the overall emission reduction effect.

【学位授予单位】:长安大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X51;X734

【相似文献】

相关会议论文 前3条

1 陕西省社科院经济所课题组;;加快组建大西安 发展关中城市群[A];2003年陕西经济社会蓝皮书——陕西经济发展对策与建设[C];2003年

2 段汉明;;关中城市群的历史现状与发展趋势[A];中国地理学会2006年学术年会论文摘要集[C];2006年

3 王发曾;程丽丽;;山东半岛、中原、关中城市群地区的城镇化状态与动力机制[A];中国地理学会百年庆典学术论文摘要集[C];2009年

相关重要报纸文章 前10条

1 记者 拓玲;加快关中城市群建设 开创富民强省新局面[N];西安日报;2013年

2 本报记者 张莎;关中城市群:“中国金腰带”[N];重庆日报;2007年

3 本报记者 张斌峰;着力打造以西安为核心的关中城市群[N];陕西日报;2008年

4 刘晓辰;关中城市群:提高资源配置效率 促进可持续发展[N];经济日报;2008年

5 特派记者 刘振;加快推进关中城市群建设 实现经济社会发展新跨越[N];西安日报;2013年

6 杜朋举 普毛毛;尽快改善关中城市群空气质量[N];中国环境报;2013年

7 本报记者 傅航 特约记者 穆易;“打造关中城市群”[N];21世纪经济报道;2005年

8 本报记者 李晓莉;完善等级结构 整合关中城市群[N];西安日报;2005年

9 记者 韩乐;我市召开《关中城市群建设规划》讨论会[N];渭南日报;2008年

10 本报记者 王文昭 通讯员 张新社;大地质为城镇化建设提供正能量[N];中国国土资源报;2013年

相关博士学位论文 前2条

1 陶双成;关中城市群道路移动源污染物排放清单与减排策略研究[D];长安大学;2016年

2 郝俊卿;关中城市群产业集聚特征、机理及效应研究[D];西北大学;2013年

相关硕士学位论文 前10条

1 贾媛媛;新型城镇化下关中城市群人口变迁对住房需求的影响研究[D];西安建筑科技大学;2016年

2 刘坤;关中城市群城市建设用地规模预测研究[D];西安建筑科技大学;2016年

3 张娟;关中城市群协调发展测度研究[D];西安理工大学;2007年

4 张小宁;关中城市群产业协调发展与布局研究[D];西安理工大学;2006年

5 刘华旭;关中城市群系统架构研究[D];西北大学;2009年

6 郭子彦;关中城市群协调发展的机制分析与政策研究[D];西安理工大学;2007年

7 景哲;关中城市群发展模式研究[D];西安理工大学;2005年

8 徐鹏;关中城市群内部差异及协调发展研究[D];西北大学;2004年

9 张丽青;关中城市群空间结构演化与布局研究[D];西安理工大学;2006年

10 何红芸;关中城市群绿道网规划研究[D];西北农林科技大学;2015年



本文编号:1405796

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/quyujingjilunwen/1405796.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户388ee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com