基于BP神经网络的开采沉陷预计参数求取
[Abstract]:The mining of coal resources leads to surface movement and deformation, which may lead to surface collapse, cracks and other disasters. It seriously affects the safe production of mining area and the normal life of the surrounding residents, and poses a great threat to the development of regional economy. Therefore, the prediction model of mining subsidence is of great significance to determine the range and shape variables of surface subsidence. Based on the measured data of Anyang mining area and the measured data collected from many mining areas in China, this paper analyzes the measured data and obtains the predicted results. At the same time, the parameters of probability integration method in Anyang mining area are predicted. The main contents of this paper are as follows: (1) based on the prediction of mining subsidence, the probability integration method is selected in this paper. The relationship between the predicted parameters of the probabilistic integration method and the geological and mining conditions is introduced, which lays a foundation for the paper. As the probability integration method is the most widely used method for predicting subsidence in mining area, the precision of prediction parameters of probability integration method determines the accuracy of surface subsidence prediction. (2) in order to reduce the error of experimental data to the network, Use Origin8.0 to smooth the raw data. Then, the influence of different selection ways of experimental data on the predicted results is analyzed. (3) the BP neural network model is introduced, and the parameters are predicted, and the accuracy of the predicted results is analyzed. Then genetic algorithm is used to optimize the BP neural network. The optimized network predicts the parameters and analyzes its accuracy. Comparing the accuracy of the two kinds of prediction results and analyzing the causes of the error caused by the difference of the results. (4) according to the measured data of Anyang mining area, using genetic algorithm to optimize the BP neural network, the parameters of the probability integration method in Anyang mining area are forecasted. Then compared with the actual parameters of Anyang mining area, draw a conclusion.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD327;TP183
【参考文献】
相关期刊论文 前10条
1 张静;;神经网络在智能信息处理技术中的应用研究[J];科技展望;2015年24期
2 胡加斌;;巷道顶板淋水研究与治理[J];能源与节能;2015年07期
3 张光建;;模式识别中的感知器网络权值计算与MATLAB仿真[J];智能计算机与应用;2015年03期
4 朱忠华;王李管;毕林;钟德云;;基于VTK的地下矿开采沉陷预计研究与实现[J];福州大学学报(自然科学版);2015年03期
5 张豪杰;查剑锋;李怀展;;概率积分法参数影响因素分析与研究展望[J];煤炭技术;2015年04期
6 胡小玲;;工矿区与高层建筑物沉降监测数据分析系统的设计与实现[J];中外企业家;2013年21期
7 郝秀兰;杜煜;苏利敏;;Matlab在通信原理课程教学中的应用[J];计算机科学;2012年S2期
8 秦莹;;采矿诱发地质灾害风险研究现状及其发展[J];煤炭技术;2012年01期
9 樊振宇;;BP神经网络模型与学习算法[J];软件导刊;2011年07期
10 夏青青;安鹏宇;贺跃光;吴盛才;;基于灰色理论的矿区地表沉降预测[J];交通科学与工程;2010年03期
相关硕士学位论文 前10条
1 张杰;基于ArcEngine建筑物保护煤柱留设自动化及三维可视化研究[D];安徽理工大学;2016年
2 李俊芳;基于AE的阳煤矿区地面沉陷灾害数据库的建立及应用[D];太原理工大学;2014年
3 袁博;复合岩层条件下保护煤柱合理尺寸研究与应用[D];太原理工大学;2014年
4 张静;采空区地表移动变形分析与评价[D];长安大学;2013年
5 赵丽;巨厚松散层下地表移动参数解算与移动变形预计[D];安徽理工大学;2013年
6 朱锟;基于概率积分法与VB语言的采空区地表移动变形预测系统研究[D];长安大学;2013年
7 洪兴;浅埋煤层开采引起的地表移动规律研究[D];西安科技大学;2012年
8 曹虹;基于BP神经网络的交通流量预测[D];长安大学;2012年
9 杨新佳;基于神经网络的教学质量评价模型研究[D];西安科技大学;2011年
10 代巨鹏;西北厚松散层矿区开采沉陷预计与可视化研究[D];西安科技大学;2011年
,本文编号:2286194
本文链接:https://www.wllwen.com/jingjilunwen/quyujingjilunwen/2286194.html