盘锦市物流需求预测研究
[Abstract]:Panjin is one of the famous petrochemical production bases in China. It is also an important processing and production base of high quality agricultural products and a first-class rice export base. However, in recent years, due to the impact of shrinking crude oil and natural gas production in Liaohe Oilfield, Panjin City, as a resource-based city, has become increasingly acute in its inherent contradictions and problems. How to achieve sustainable development is an arduous task that needs no delay. In June 2007, At the fourth plenary meeting of the leading Group of the State Council for the Revitalization of the Northeast and other Old Industrial bases, it was decided that Panjin City should be listed as a pilot city for the economic transformation of the national resource-based cities. Panjin City is also one of the four key cities of circular economy proposed by the "Liaoning Coastal Economic Belt Development Plan" in 2009. This is for Panjin to cultivate the following industries such as petrochemical, equipment manufacturing, plastics and new materials, organic green food, The modern service industry and so on has provided the inexhaustible motive force. At present, there are few research results on the development of modern logistics industry in Panjin City, and the city is striding forward while lacking the guidance of systematic development strategy planning, which is prone to over-development and blind construction of urban logistics infrastructure. As a result of the imbalance between supply capacity and demand level of urban logistics, it is necessary to carry out scientific and reasonable urban logistics development planning for panjinas in rapid development. In this paper, the overview of urban logistics demand, the introduction of demand forecasting model, the development of logistics industry in Panjin and the logistics demand prediction in Panjin are studied. Firstly, this paper introduces the related theories of urban logistics, secondly, introduces the prediction model to be used in this paper. Thirdly, this paper makes a comprehensive analysis of the macro-economic situation, regional economic situation and the city's own environmental conditions of Panjin city's development of modern logistics. Finally, according to Panjin City, with the help of SAS and MATLAB software to forecast the urban logistics demand, the grey forecasting model, the stepwise regression forecasting method, the polynomial curve fitting forecasting method and the combined forecasting model are used to forecast the urban logistics demand, respectively. The accuracy of the forecasting results of each model is analyzed in turn, and the freight volume and freight turnover of Panjin City from 2014-2016 are forecasted. The prediction results show that Panjin City has a wide development space for logistics development. Finally, the development plan of Panjin logistics is proposed.
【学位授予单位】:大连交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F259.27
【相似文献】
相关期刊论文 前10条
1 耿波;赵爱文;;灰色预测在物流需求预测中的应用分析——以徐州地区为例[J];科技风;2012年21期
2 高洪波;杨建强;;基于多变量灰色模型算法的物流需求预测研究[J];物流技术;2013年13期
3 施先亮,张可明;2008年北京奥运赛事物流需求预测[J];数量经济技术经济研究;2003年10期
4 向军,杨伟,管卫华,王书翰,谭金会;物流需求预测中周期因素和季节因素的探讨[J];四川工业学院学报;2004年S1期
5 唐振龙;张学引;;河北现代物流需求预测分析[J];中国市场;2007年Z2期
6 冯怡;张志勇;徐广姝;文培娜;;基于粗糙集理论的我国物流需求预测[J];物流技术;2010年01期
7 李琦;;物流需求预测中移动平均法应用分析[J];中国商贸;2011年02期
8 万励;李余琪;吴洁明;;区域物流需求预测的应用研究[J];微电子学与计算机;2011年09期
9 吴洁明;李余琪;万励;;物流需求预测算法的仿真研究[J];计算机仿真;2011年09期
10 耿立艳;赵鹏;张占福;;基于二阶振荡微粒群最小二乘支持向量机的物流需求预测[J];计算机应用研究;2012年07期
相关会议论文 前5条
1 胡常伟;陈新;陈新度;;多品种小批量产品分销中的物流需求预测方法[A];全国生产工程第九届年会暨第四届青年科技工作者学术会议论文集(二)[C];2004年
2 史磊;李江宏;李智鹏;;乌鲁木齐市物流需求预测研究[A];地理学核心问题与主线——中国地理学会2011年学术年会暨中国科学院新疆生态与地理研究所建所五十年庆典论文摘要集[C];2011年
3 袁丽娜;周建勤;;基于滑动平均-灰色模型的物流需求预测研究[A];2012管理创新、智能科技与经济发展研讨会论文集[C];2012年
4 陈德良;王文科;;湖南省物流需求预测[A];《两型社会建设与湖南管理创新》论坛论文集[C];2008年
5 刘洪霞;鹿应荣;;非线性预测模型在粮食物流需求预测中的应用[A];农业系统工程理论与实践研究——全国农业系统工程学术研讨会论文集[C];2006年
相关硕士学位论文 前10条
1 陈云飞;物流需求预测在M公司的应用研究[D];苏州大学;2014年
2 李自立;基于支持向量机的区域物流需求预测研究[D];武汉科技大学;2009年
3 黄永福;重庆市物流需求预测方法及应用研究[D];重庆交通大学;2009年
4 黄丽;随机时间序列模型在物流需求预测中的应用[D];武汉大学;2004年
5 何霞;基于灰色系统和神经网络的省级区域物流需求预测[D];长沙理工大学;2009年
6 文培娜;基于人工神经网络的区域物流需求预测及实证研究[D];北京物资学院;2010年
7 刘海波;赤峰市物流需求预测研究[D];吉林大学;2012年
8 万福来;天津港物流需求预测和物流发展策略研究[D];天津大学;2012年
9 余牛;基于组合预测法的城市物流需求预测研究[D];武汉科技大学;2011年
10 吴烨;基于神经网络的重庆市物流需求预测研究[D];重庆理工大学;2010年
,本文编号:2382802
本文链接:https://www.wllwen.com/jingjilunwen/quyujingjilunwen/2382802.html