当前位置:主页 > 经济论文 > 企业经济论文 >

仓储作业动态货位优化技术研究与应用

发布时间:2018-04-25 10:36

  本文选题:动态货位优化 + 电子标签拣选库 ; 参考:《东华大学》2017年硕士论文


【摘要】:随着现代社会经济的发展,科学技术、电子商务、智能化技术、仓储管理及作业智能化设备也相继引进,智能仓储业务应运而生。仓储作业是指从商品入库到商品发送出库的整个过程,可归纳为在库管理、出入库作业等。而在整个过程中拣货作业所占用的成本最高、耗时最多,其效率与准确性都对公司的服务品质有极大的影响。实现仓储作业中的动态货位优化是提升拣选作业效率的有效手段。电子标签拣选系统具有弹性控制操作时间和实时控制功能,自动化仓库系统具有省力,快速、准确操作、提高效率、降低物流仓储成本等优点。因此电子标签拣选系统和自动化立体库系统应用越来越广泛。但是现代仓储管理对信息化、服务综合化、自动化、智能化提出越来越高的要求,特别是在出入库作业的动态优化;优化模型对不同库型的适应;与企业现有ERP系统数据的集成,实现资源的优化配置等方面。因此现有的仓储管理与控制系统在动态货位优化的实现、可集成性以及通用性等方面仍需进一步研究与开发。本文紧密结合现代仓储管理的发展,主要面向自动化立体库与电子标签拣选库开展了动态货位优化技术研究。主要研究内容如下:(1)基于智能计算的动态货位优化数学模型在批量订单的情况下,为了提高自动化立体仓库(AS/RS)的整体作业效率,提出了以堆垛机作业均衡与高仓储效率为目标的立体库货位优化模型;为了提高电子标签拣选库(PTL)的效率,提出了以订单完成度、货位占有率以及货位聚集度为目标的拣选优化模型。(2)对动态货位优化数学模型中的权重因子决策由于本文基于电子标签拣选库(PTL)与自动化立体库(AS/RS)设计的动态货位优化数学模型中有多重准则因素,为了确定各准则的重要性引入层次分析法中的判断矩阵法,构建多种标度的判断矩阵并求解特征值,通过一致性检验后,通过实例测试比较决策出最佳权重因子。(3)动态货位优化算法设计及试验设计了二进制粒子群算法(Binary Particle Swarm Optimization,BPSO)和遗传算法(Genetic Algorithm,GA)对动态优化模型求解。并且通过实例测试比较分析了两种优化算法的性能。通过电子标签拣选库出库作业实例,验证了所提模型及算法的有效性,通过比较可得出BPSO比GA可提升8.5%的作业效率。(4)动态货位优化服务组件的实现针对基于Web的智能化仓储作业系统,利用面向服务的方法,将二进制粒群算法以及遗传算法封装为支持智能化仓储作业的服务组件,集成到仓储作业系统。系统针对电子标签拣选库(PTL)与自动化立体库(AS/RS)实现了智能分配订单作业及货位优化,满足了灵活应对实际拣选作业的需求。
[Abstract]:With the development of modern society and economy, science and technology, electronic commerce, intelligent technology, warehouse management and intelligent operation equipment have been introduced, and intelligent storage business has emerged as the times require. Warehouse operation refers to the whole process from goods entering to sending out of warehouse, which can be summed up as management in warehouse, operation in and out of storehouse and so on. The picking process occupies the highest cost and time consuming in the whole process, and its efficiency and accuracy have a great impact on the service quality of the company. It is an effective means to improve the efficiency of picking operation to realize dynamic cargo location optimization in warehousing. The electronic label picking system has the function of flexible control of operation time and real-time control. The automatic warehouse system has the advantages of saving labor, fast and accurate operation, improving efficiency and reducing the cost of logistics storage, etc. Therefore, the electronic label picking system and the automated stereo library system are more and more widely used. However, modern warehouse management has higher and higher requirements for information, service integration, automation and intelligence, especially for dynamic optimization of incoming and outgoing operations; The integration with the existing ERP system data, the realization of the optimal allocation of resources and so on. Therefore, the implementation of dynamic cargo location optimization, integration and versatility of the existing warehouse management and control system need to be further studied and developed. Based on the development of modern warehouse management, this paper focuses on the research of dynamic cargo location optimization for automated warehouse and electronic label picking warehouse. The main research contents are as follows: (1) in order to improve the overall operation efficiency of ASR / RS, the dynamic location optimization mathematical model based on intelligent calculation is used to improve the operation efficiency of ASR / RS in the case of bulk orders. In order to improve the efficiency of electronic label sorting library (PTL), the paper puts forward an optimized model of warehouse location with the aim of balancing the work of stacker and high storage efficiency, and puts forward the degree of order completion in order to improve the efficiency of the electronic label sorting library (PTL). The weight factor decision of the dynamic location optimization mathematical model is based on the electronic label picking library PTL) and the automatic stereoscopic warehouse ASP / RS) design dynamic goods based on the selection optimization model of cargo space occupancy and the degree of cargo location aggregation. (2) the decision of weight factor in the dynamic location optimization mathematical model is based on the electronic label picking library (PTL) and the automatic stereoscopic warehouse (ASP / RS). There are many criterion factors in the mathematical model of bit optimization. In order to determine the importance of each criterion, the judgment matrix method of AHP is introduced, and the judgment matrix of various scales is constructed and the eigenvalues are solved. The dynamic cargo location optimization algorithm is designed and tested. Binary Particle Swarm optimization algorithm (BPSO) and genetic algorithm (GA) are designed to solve the dynamic optimization model. The performance of the two optimization algorithms is compared and analyzed by example test. The validity of the proposed model and algorithm is verified by an example of tag picking library out of library. By comparison, it can be concluded that BPSO can improve the working efficiency by 8.5% than GA. The realization of dynamic cargo location optimization service component is aimed at the intelligent warehouse operation system based on Web, and the service-oriented method is used. Binary particle swarm algorithm and genetic algorithm are encapsulated as service components to support intelligent warehousing and integrated into warehouse job system. Aiming at tag picking library PTL) and automatic stereoscopic library ASP / RS), the system realizes the intelligent distribution of order operation and the optimization of cargo location, which meets the demand of flexible response to the actual picking operation.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F274;TP18

【参考文献】

相关期刊论文 前10条

1 项前;杜永华;吕志军;张欣;;基于二进制粒群的拣选作业优化[J];包装工程;2017年03期

2 张思建;方彦军;贺瑶;肖勇;;基于模拟退火算法的AVS/RS多批货箱入库货位优化[J];武汉大学学报(工学版);2016年02期

3 李晓;项前;吕志军;管树林;;基于单双亲混合GA的复杂拣选作业优化[J];计算机工程与设计;2015年12期

4 徐敏;陈州尧;李俊蒂;;基于模拟退火算法的码垛机器人码垛路径规划[J];包装工程;2015年15期

5 穆聪聪;郭敏;;基于产品频度与偏离度的货位分配策略研究[J];物流科技;2015年06期

6 李珍萍;于洋涛;李文玉;;基于贪婪算法的仓库货位优化问题研究[J];物流技术;2015年05期

7 孙胤;;我国物流信息化存在的问题与对策[J];合作经济与科技;2015年04期

8 刘昌芬;韩红桂;乔俊飞;;广义逆向学习方法的自适应差分算法[J];智能系统学报;2015年01期

9 刘国春;费强;赵武云;戴飞;;基于Matlab遗传算法优化工具箱的应用[J];机械研究与应用;2014年02期

10 高光莉;;我国仓储管理现状及发展趋势[J];现代经济信息;2014年08期

相关博士学位论文 前1条

1 陈方宇;多区块仓库环境下订单拣选路线规划研究[D];华中科技大学;2014年

相关硕士学位论文 前10条

1 王一斌;基于Web的仓储作业监控与管理系统关键技术研究[D];东华大学;2016年

2 何洪;自动化立体仓库存取作业调度两阶段优化研究[D];重庆工商大学;2015年

3 姜雪莹;DA公司零配件仓储货位优化研究[D];哈尔滨理工大学;2015年

4 冯倩;九州通医药物流中心货位分配及拣选作业优化研究[D];北京交通大学;2014年

5 刘思佳;A公司仓储中心出库作业优化研究[D];吉林大学;2014年

6 王麒麟;广州中外运KY仓储中心作业分析与优化研究[D];华南理工大学;2013年

7 孙嘉炜;立体仓库出入库货位优化模型与算法研究[D];东北大学;2013年

8 王占磊;配送中心订单分批及拣选路径优化问题研究[D];吉林大学;2013年

9 宋召良;基于Web Services的仓库管理系统设计及其零存储技术研究[D];湖南大学;2013年

10 白寅;基于偏离度的仓库拣货路径优化方法及应用[D];华中科技大学;2012年



本文编号:1800953

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/xmjj/1800953.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c07c1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com