服务号码捆绑特征在离网预测系统中的应用
本文关键词:服务号码捆绑特征在离网预测系统中的应用
更多相关文章: 客户流失 随机森林 服务号码捆绑 逻辑回归 离网预测系统
【摘要】:用户流失问题是电信运营商面临的亟待解决的问题,针对不同的场景,业界研究开发了多个用户离网预测系统。服务号码捆绑指用户在使用运营商服务期间,与银行、电商、便利店等第三方服务提供商通过绑定手机号产生联系。通过研究发现用户在服务存续期间普遍会绑定多种第三方服务提供商,这些商家会不定时给用户推送短信,当用户即将流失时,多数用户会逐渐取消这类服务的绑定。因此,服务号码捆绑特征对于离网用户的甄别起到了重要的作用。采用随机森林算法构建离网预测模型,利用逻辑回归算法对服务号码捆绑特征进行降维,并加入模型,进行离网用户分析,从而辅助决策者制订相应的客户维挽策略,降低客户离网率。实验结果表明,服务号码软捆绑特征能够提高系统的分析预测能力。
【作者单位】: 中国联合网络通信有限公司上海市分公司;苏州大学计算机科学与技术学院;
【关键词】: 客户流失 随机森林 服务号码捆绑 逻辑回归 离网预测系统
【基金】:江苏省科技支撑计划重点项目(BE2014005-4)资助
【分类号】:F626;O212.1
【正文快照】: 本文受江苏省科技支撑计划重点项目(BE2014005-4)资助。1引言近年来,随着国内外电信市场竞争的加剧,客户选择产品及服务的余地愈加广泛,客户的频繁流失是困扰运行商的一大难题,而且这种状况还在进一步恶化,运营商企业面临着巨大挑战。研究表明,客户离网率减少5%,能给企业带来3
【相似文献】
中国期刊全文数据库 前10条
1 张启敏,聂赞坎;随机森林发展系统解的存在性和唯一性(英文)[J];应用数学;2003年04期
2 李建更;高志坤;;随机森林:一种重要的肿瘤特征基因选择法[J];生物物理学报;2009年01期
3 袁敏;胡秀珍;;随机森林方法预测膜蛋白类型[J];生物物理学报;2009年05期
4 方匡南;吴见彬;朱建平;谢邦昌;;随机森林方法研究综述[J];统计与信息论坛;2011年03期
5 方正;李益洲;肖嘉敏;李功兵;文志宁;李梦龙;;基于复杂网络的随机森林算法预测氨基酸突变对蛋白质稳定性的影响(英文)[J];化学研究与应用;2011年05期
6 王象刚;;基于K均值随机森林快速算法及入侵检测中的应用[J];科技通报;2013年08期
7 曹正凤;谢邦昌;纪宏;;一种随机森林的混合算法[J];统计与决策;2014年04期
8 张光亚;方柏山;;基于氨基酸组成分布的嗜热和嗜冷蛋白随机森林分类模型[J];生物工程学报;2008年02期
9 马景义;吴喜之;谢邦昌;;拟自适应分类随机森林算法[J];数理统计与管理;2010年05期
10 李贞子;张涛;武晓岩;李康;;随机森林回归分析及在代谢调控关系研究中的应用[J];中国卫生统计;2012年02期
中国重要会议论文全文数据库 前7条
1 谢程利;王金桥;卢汉清;;核森林及其在目标检测中的应用[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
2 武晓岩;方庆伟;;基因表达数据分析的随机森林方法及算法改进[A];黑龙江省第十次统计科学讨论会论文集[C];2008年
3 张天龙;梁龙;王康;李华;;随机森林结合激光诱导击穿光谱技术用于的钢铁分类[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
4 相玉红;张卓勇;;组蛋白去乙酰化酶抑制剂的构效关系研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
5 张涛;李贞子;武晓岩;李康;;随机森林回归分析方法及在代谢组学中的应用[A];2011年中国卫生统计学年会会议论文集[C];2011年
6 冯飞翔;冯辅周;江鹏程;刘菁;刘建敏;;随机森林和k-近邻法在某型坦克变速箱状态识别中的应用[A];第八届全国转子动力学学术讨论会论文集[C];2008年
7 曹东升;许青松;梁逸曾;陈宪;李洪东;;组合树的集合体和后向消除策略去分类P-糖蛋白化合物[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
中国博士学位论文全文数据库 前4条
1 曹正凤;随机森林算法优化研究[D];首都经济贸易大学;2014年
2 雷震;随机森林及其在遥感影像处理中应用研究[D];上海交通大学;2012年
3 岳明;基于随机森林和规则集成法的酒类市场预测与发展战略[D];天津大学;2008年
4 李书艳;单点氨基酸多态性与疾病相关关系的预测及其机制研究[D];兰州大学;2010年
中国硕士学位论文全文数据库 前10条
1 钱维;药品不良反应监测中随机森林方法的建立与实现[D];第二军医大学;2012年
2 韩燕龙;基于随机森林的指数化投资组合构建研究[D];华南理工大学;2015年
3 贺捷;随机森林在文本分类中的应用[D];华南理工大学;2015年
4 张文婷;交通环境下基于改进霍夫森林的目标检测与跟踪[D];华南理工大学;2015年
5 李强;基于多视角特征融合与随机森林的蛋白质结晶预测[D];南京理工大学;2015年
6 朱玟谦;一种收敛性随机森林在人脸检测中的应用研究[D];武汉理工大学;2015年
7 肖宇;基于序列图像的手势检测与识别算法研究[D];电子科技大学;2014年
8 李慧;一种改进的随机森林并行分类方法在运营商大数据的应用[D];电子科技大学;2015年
9 赵亚红;面向多类标分类的随机森林算法研究[D];哈尔滨工业大学;2014年
10 黎成;基于随机森林和ReliefF的致病SNP识别方法[D];西安电子科技大学;2014年
,本文编号:892851
本文链接:https://www.wllwen.com/jingjilunwen/xxjj/892851.html